//***************************************************************************** // startup_gcc.c // // Startup code for use with GCC. // // Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/ // // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // //***************************************************************************** #include #include "hw_nvic.h" #include "hw_types.h" //***************************************************************************** // // Heap block pointers defined by linker script // //***************************************************************************** static char *heap_end = 0; extern unsigned long _heap; extern unsigned long _eheap; //***************************************************************************** // // Forward declaration of the default fault handlers. // //***************************************************************************** void ResetISR(void); static void NmiSR(void); static void FaultISR(void); static void IntDefaultHandler(void); static void BusFaultHandler(void); //***************************************************************************** // // External declaration for the reset handler that is to be called when the // processor is started // //***************************************************************************** extern void _c_int00(void); extern void vPortSVCHandler(void); extern void xPortPendSVHandler(void); extern void xPortSysTickHandler(void); //***************************************************************************** // // The entry point for the application. // //***************************************************************************** extern int main(void); //***************************************************************************** // // Reserve space for the system stack. // //***************************************************************************** static uint32_t pui32Stack[1024]; //***************************************************************************** // // The vector table. Note that the proper constructs must be placed on this to // ensure that it ends up at physical address 0x0000.0000. // //***************************************************************************** __attribute__ ((section(".intvecs"))) void (* const g_pfnVectors[256])(void) = { (void (*)(void))((uint32_t)pui32Stack + sizeof(pui32Stack)), // The initial stack pointer ResetISR, // The reset handler NmiSR, // The NMI handler FaultISR, // The hard fault handler IntDefaultHandler, // The MPU fault handler BusFaultHandler, // The bus fault handler IntDefaultHandler, // The usage fault handler 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved #ifdef USE_FREERTOS vPortSVCHandler, // SVCall handler #else IntDefaultHandler, // SVCall handler #endif IntDefaultHandler, // Debug monitor handler 0, // Reserved #ifdef USE_FREERTOS xPortPendSVHandler, // The PendSV handler xPortSysTickHandler, // The SysTick handler #else IntDefaultHandler, // The PendSV handler IntDefaultHandler, // The SysTick handler #endif IntDefaultHandler, // GPIO Port A0 IntDefaultHandler, // GPIO Port A1 IntDefaultHandler, // GPIO Port A2 IntDefaultHandler, // GPIO Port A3 0, // Reserved IntDefaultHandler, // UART0 Rx and Tx IntDefaultHandler, // UART1 Rx and Tx 0, // Reserved IntDefaultHandler, // I2C0 Master and Slave 0,0,0,0,0, // Reserved IntDefaultHandler, // ADC Channel 0 IntDefaultHandler, // ADC Channel 1 IntDefaultHandler, // ADC Channel 2 IntDefaultHandler, // ADC Channel 3 IntDefaultHandler, // Watchdog Timer IntDefaultHandler, // Timer 0 subtimer A IntDefaultHandler, // Timer 0 subtimer B IntDefaultHandler, // Timer 1 subtimer A IntDefaultHandler, // Timer 1 subtimer B IntDefaultHandler, // Timer 2 subtimer A IntDefaultHandler, // Timer 2 subtimer B 0,0,0,0, // Reserved IntDefaultHandler, // Flash 0,0,0,0,0, // Reserved IntDefaultHandler, // Timer 3 subtimer A IntDefaultHandler, // Timer 3 subtimer B 0,0,0,0,0,0,0,0,0, // Reserved IntDefaultHandler, // uDMA Software Transfer IntDefaultHandler, // uDMA Error 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved IntDefaultHandler, // SHA 0,0, // Reserved IntDefaultHandler, // AES 0, // Reserved IntDefaultHandler, // DES 0,0,0,0,0, // Reserved IntDefaultHandler, // SDHost 0, // Reserved IntDefaultHandler, // I2S 0, // Reserved IntDefaultHandler, // Camera 0,0,0,0,0,0,0, // Reserved IntDefaultHandler, // NWP to APPS Interrupt IntDefaultHandler, // Power, Reset and Clock module 0,0, // Reserved IntDefaultHandler, // Shared SPI IntDefaultHandler, // Generic SPI IntDefaultHandler, // Link SPI 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0,0,0,0,0,0,0,0,0, // Reserved 0,0 // Reserved }; //***************************************************************************** // // The following are constructs created by the linker, indicating where the // the "data" and "bss" segments reside in memory. The initializers for the // for the "data" segment resides immediately following the "text" segment. // //***************************************************************************** extern uint32_t _etext; extern uint32_t _data; extern uint32_t _edata; extern uint32_t _bss; extern uint32_t _ebss; extern uint32_t __init_data; //***************************************************************************** // // This is the code that gets called when the processor first starts execution // following a reset event. Only the absolutely necessary set is performed, // after which the application supplied entry() routine is called. Any fancy // actions (such as making decisions based on the reset cause register, and // resetting the bits in that register) are left solely in the hands of the // application. // //***************************************************************************** void ResetISR(void) { uint32_t *pui32Src, *pui32Dest; // // Copy the data segment initializers // pui32Src = &__init_data; for(pui32Dest = &_data; pui32Dest < &_edata; ) { *pui32Dest++ = *pui32Src++; } // // Zero fill the bss segment. // __asm(" ldr r0, =_bss\n" " ldr r1, =_ebss\n" " mov r2, #0\n" " .thumb_func\n" "zero_loop:\n" " cmp r0, r1\n" " it lt\n" " strlt r2, [r0], #4\n" " blt zero_loop"); // // Call the application's entry point. // main(); } //***************************************************************************** // // This is the code that gets called when the processor receives a NMI. This // simply enters an infinite loop, preserving the system state for examination // by a debugger. // //***************************************************************************** static void NmiSR(void) { // // Enter an infinite loop. // while(1) { } } //***************************************************************************** // // This is the code that gets called when the processor receives a fault // interrupt. This simply enters an infinite loop, preserving the system state // for examination by a debugger. // //***************************************************************************** static void FaultISR(void) { // // Enter an infinite loop. // while(1) { } } //***************************************************************************** // // This is the code that gets called when the processor receives an unexpected // interrupt. This simply enters an infinite loop, preserving the system state // for examination by a debugger. // //***************************************************************************** static void BusFaultHandler(void) { // // Go into an infinite loop. // while(1) { } } //***************************************************************************** // // This is the code that gets called when the processor receives an unexpected // interrupt. This simply enters an infinite loop, preserving the system state // for examination by a debugger. // //***************************************************************************** static void IntDefaultHandler(void) { // // Go into an infinite loop. // while(1) { } } //***************************************************************************** // // This function is used by dynamic memory allocation API(s) in newlib // library // //***************************************************************************** void * _sbrk(unsigned int incr) { char *prev_heap_end; // // Check if this function is calld for the // first time and the heap end pointer // if (heap_end == 0) { heap_end = (char *)&_heap; } // // Check if we have enough heap memory available // prev_heap_end = heap_end; if (heap_end + incr > (char *)&_eheap) { // // Return error // return 0; } // // Set the new heap end pointer // heap_end += incr; // // Return the pointer to the newly allocated memory // return prev_heap_end; }