Merge branch 'feature/ultrasonic' into 'develop'

Feature/ultrasonic



See merge request !28
This commit is contained in:
tkl 2016-08-29 14:18:25 +00:00
commit 03e620d63b
11 changed files with 617 additions and 173 deletions

View File

@ -26,7 +26,7 @@ endif
C_SOURCES := $(foreach folder, $(SRC_DIR), $(wildcard $(folder)/*.c)) C_SOURCES := $(foreach folder, $(SRC_DIR), $(wildcard $(folder)/*.c))
C_OBJECTS := $(C_SOURCES:%.c=$(OBJ_DIR)/%.o) C_OBJECTS := $(C_SOURCES:%.c=$(OBJ_DIR)/%.o)
C_DEPS := $(SOURCES:%.c=$(OBJ_DIR)/%.d) C_DEPS := $(C_SOURCES:%.c=$(OBJ_DIR)/%.d)
all: $(MAIN_FILE) all: $(MAIN_FILE)

View File

@ -57,7 +57,8 @@ C_FLAGS += \
-Wno-unused-parameter \ -Wno-unused-parameter \
-Wno-sign-compare \ -Wno-sign-compare \
-Wno-missing-prototypes \ -Wno-missing-prototypes \
-Wno-missing-declarations -Wno-missing-declarations \
-Wno-missing-field-initializers
L_FLAGS := \ L_FLAGS := \
-T mem.ld \ -T mem.ld \
@ -66,7 +67,8 @@ L_FLAGS := \
-nostartfiles \ -nostartfiles \
-Xlinker --gc-sections \ -Xlinker --gc-sections \
-L"config/linker" \ -L"config/linker" \
--specs=nano.specs --specs=nano.specs \
-u _printf_float
ifeq ($(DEBUG),y) ifeq ($(DEBUG),y)
OPTIM = g OPTIM = g

View File

@ -172,6 +172,11 @@ static TIM_OC_InitTypeDef t4_output_compare_cfg = {
.OCNIdleState = TIM_OCNIDLESTATE_SET .OCNIdleState = TIM_OCNIDLESTATE_SET
}; };
static TIM_MasterConfigTypeDef t4_master_cfg = {
.MasterOutputTrigger = TIM_TRGO_RESET,
.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE,
};
static const GPIO_InitTypeDef port_cfg_D15 = { static const GPIO_InitTypeDef port_cfg_D15 = {
.Pin = GPIO_PIN_15, .Pin = GPIO_PIN_15,
.Mode = GPIO_MODE_AF_PP, .Mode = GPIO_MODE_AF_PP,
@ -188,7 +193,9 @@ static const struct stm32f4_gpio t4c4_gpio = {
static struct stm32f4_pwm str32f4_pwm_4 = { static struct stm32f4_pwm str32f4_pwm_4 = {
.pwm_gpio = &t4c4_gpio, .pwm_gpio = &t4c4_gpio,
.timer_handle = &tim4_handle, .timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg, .output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_4, .channel = TIM_CHANNEL_4,
}; };
@ -222,7 +229,9 @@ static const struct stm32f4_gpio stm32f4_pwm_t4c3_gpio = {
static struct stm32f4_pwm str32f4_pwm_3 = { static struct stm32f4_pwm str32f4_pwm_3 = {
.pwm_gpio = &stm32f4_pwm_t4c3_gpio, .pwm_gpio = &stm32f4_pwm_t4c3_gpio,
.timer_handle = &tim4_handle, .timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg, .output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_3, .channel = TIM_CHANNEL_3,
}; };
@ -256,7 +265,9 @@ static const struct stm32f4_gpio stm32f4_pwm_t4c2_gpio = {
static struct stm32f4_pwm str32f4_pwm_2 = { static struct stm32f4_pwm str32f4_pwm_2 = {
.pwm_gpio = &stm32f4_pwm_t4c2_gpio, .pwm_gpio = &stm32f4_pwm_t4c2_gpio,
.timer_handle = &tim4_handle, .timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg, .output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_2, .channel = TIM_CHANNEL_2,
}; };
@ -290,7 +301,9 @@ static const struct stm32f4_gpio stm32f4_pwm_t4c1_gpio = {
static struct stm32f4_pwm str32f4_pwm_1 = { static struct stm32f4_pwm str32f4_pwm_1 = {
.pwm_gpio = &stm32f4_pwm_t4c1_gpio, .pwm_gpio = &stm32f4_pwm_t4c1_gpio,
.timer_handle = &tim4_handle, .timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg, .output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_1, .channel = TIM_CHANNEL_1,
}; };
@ -308,6 +321,133 @@ const struct driver pwm_1 = {
&pwm_ch1, &pwm_ch1,
}; };
// PWM5 CHANNEL 2
/* apb1 clock = 84MHz */
/* period_reg = src_clk / presc / cnt_clk */
/* 1679 = 84MHZ / 1000 / 50Hz - 1 */
static TIM_HandleTypeDef tim5_handle = {
.Instance = TIM5,
.Init.Prescaler = 1000,
.Init.CounterMode = TIM_COUNTERMODE_UP,
.Init.Period = 1679,
.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1,
.Init.RepetitionCounter = 0,
};
static TIM_OC_InitTypeDef t5_output_compare_cfg = {
.OCMode = TIM_OCMODE_PWM1,
.Pulse = 840,
.OCPolarity = TIM_OCPOLARITY_HIGH,
.OCNPolarity = TIM_OCNPOLARITY_HIGH,
.OCFastMode = TIM_OCFAST_DISABLE,
.OCIdleState = TIM_OCIDLESTATE_SET,
.OCNIdleState = TIM_OCNIDLESTATE_SET
};
static TIM_MasterConfigTypeDef t5_master_cfg = {
.MasterOutputTrigger = TIM_TRGO_RESET,
.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE,
};
static const GPIO_InitTypeDef port_cfg_A1 = {
.Pin = GPIO_PIN_1,
.Mode = GPIO_MODE_AF_PP,
.Speed = GPIO_SPEED_FREQ_HIGH,
.Pull = GPIO_PULLUP,
.Alternate = GPIO_AF2_TIM5,
};
static const struct stm32f4_gpio t5c2_gpio = {
.port = GPIOA,
.pin = &port_cfg_A1,
};
static struct stm32f4_pwm str32f4_pwm5_c2 = {
.pwm_gpio = &t5c2_gpio,
.timer_handle = &tim5_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t5_output_compare_cfg,
.master_cfg = &t5_master_cfg,
.channel = TIM_CHANNEL_2,
};
static const struct pwm pwm5_ch2 = {
.arch_dep_device = &str32f4_pwm5_c2,
.fp = &stm32f4_pwm_fp,
};
#ifdef TEST_APP
static const struct driver pwm5_c2 = {
#else
const struct driver pwm5_c2 = {
#endif
DRIVER_TYPE_PWM,
&pwm5_ch2,
};
// PWM2 CHANNEL 4
/* apb1 clock = 84MHz */
/* period_reg = src_clk / presc / cnt_clk */
/* 1679 = 84MHZ / 1000 / 50Hz - 1 */
static TIM_HandleTypeDef t2_handle = {
.Instance = TIM2,
.Init.Prescaler = 1000,
.Init.CounterMode = TIM_COUNTERMODE_UP,
.Init.Period = 0xffff,
.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1,
.Init.RepetitionCounter = 0,
};
static TIM_IC_InitTypeDef t2_input_capture_init = {
.ICPrescaler = TIM_ICPSC_DIV1,
.ICFilter = 0,
.ICPolarity = TIM_ICPOLARITY_BOTHEDGE,
.ICSelection = TIM_ICSELECTION_INDIRECTTI,
};
static TIM_SlaveConfigTypeDef t2_slave_config = {
.SlaveMode = TIM_SLAVEMODE_RESET,
.InputTrigger = TIM_TS_TI1FP1,
.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE,
.TriggerFilter = 0,
};
static GPIO_InitTypeDef port_cfg_b10 = {
.Pin = GPIO_PIN_10,
.Mode = GPIO_MODE_AF_OD,
.Speed = GPIO_SPEED_FREQ_HIGH,
.Pull = GPIO_NOPULL,
.Alternate = GPIO_AF1_TIM2,
};
static const struct stm32f4_gpio b10_gpio = {
.port = GPIOB,
.pin = &port_cfg_b10,
};
static struct stm32f4_pwm stm32f4_pwm2_c4 = {
.pwm_gpio = &b10_gpio,
.timer_handle = &t2_handle,
.timer_src_frequency_MHz = 84,
.input_capture_init = &t2_input_capture_init,
.slave_config = &t2_slave_config,
.channel = TIM_CHANNEL_4,
};
static const struct pwm pwm2_ch4 = {
.arch_dep_device = &stm32f4_pwm2_c4,
.fp = &stm32f4_pwm_fp,
};
#ifdef TEST_APP
static const struct driver pwm2_c4 = {
#else
const struct driver pwm2_c4 = {
#endif
DRIVER_TYPE_PWM,
&pwm2_ch4,
};
// UART 1 // UART 1
static const GPIO_InitTypeDef port_cfg_uart1 = { static const GPIO_InitTypeDef port_cfg_uart1 = {
.Pin = GPIO_PIN_6 | GPIO_PIN_7, .Pin = GPIO_PIN_6 | GPIO_PIN_7,
@ -373,138 +513,6 @@ const struct driver uart_1 = {
&__uart_1, &__uart_1,
}; };
#if 0
// GPIOC0
static const GPIO_InitTypeDef port_cfg_C0 = {
GPIO_Pin_0,
GPIO_Mode_OUT,
GPIO_Speed_100MHz,
GPIO_OType_PP,
GPIO_PuPd_NOPULL
};
static const struct stm32f4_gpio stm32_f4_gpio_C0 = {
GPIOC,
&port_cfg_C0,
NULL,
NULL,
NULL,
NULL
};
static const struct gpio __gpio_c0 = {
(void*)&stm32_f4_gpio_C0,
&gpio_fp
};
#ifdef TEST_APP
static const struct driver gpio_c0 = {
#else
const struct driver gpio_c0 = {
#endif
DRIVER_TYPE_GPIO,
&__gpio_c0,
};
#endif
#if 0
// GPIO_C1
static const GPIO_InitTypeDef port_cfg_C1 = {
GPIO_Pin_1,
GPIO_Mode_OUT,
GPIO_Speed_100MHz,
GPIO_OType_PP,
GPIO_PuPd_NOPULL
};
static const struct stm32f4_gpio stm32_f4_gpio_C1 = {
GPIOC,
&port_cfg_C1,
NULL,
NULL,
NULL,
NULL
};
static const struct gpio __gpio_c1 = {
(void*)&stm32_f4_gpio_C1,
&gpio_fp
};
#ifdef TEST_APP
static const struct driver gpio_c1 = {
#else
const struct driver gpio_c1 = {
#endif
DRIVER_TYPE_GPIO,
&__gpio_c1,
};
#endif
#if 0
// GPIO_C2
static const GPIO_InitTypeDef port_cfg_C2 = {
GPIO_Pin_2,
GPIO_Mode_OUT,
GPIO_Speed_100MHz,
GPIO_OType_PP,
GPIO_PuPd_NOPULL
};
static const struct stm32f4_gpio stm32_f4_gpio_C2 = {
GPIOC,
&port_cfg_C2,
NULL,
NULL,
NULL,
NULL
};
static const struct gpio __gpio_c2 = {
(void*)&stm32_f4_gpio_C2,
&gpio_fp
};
#ifdef TEST_APP
static const struct driver gpio_c2 = {
#else
const struct driver gpio_c2 = {
#endif
DRIVER_TYPE_GPIO,
&__gpio_c2,
};
#endif
#if 0
// GPIO_C3
static const GPIO_InitTypeDef port_cfg_C3 = {
GPIO_Pin_3,
GPIO_Mode_OUT,
GPIO_Speed_100MHz,
GPIO_OType_PP,
GPIO_PuPd_NOPULL
};
static const struct stm32f4_gpio stm32_f4_gpio_C3 = {
GPIOC,
&port_cfg_C3,
NULL,
NULL,
NULL,
NULL
};
static const struct gpio __gpio_c3 = {
(void*)&stm32_f4_gpio_C3,
&gpio_fp
};
#ifdef TEST_APP
static const struct driver gpio_c3 = {
#else
const struct driver gpio_c3 = {
#endif
DRIVER_TYPE_GPIO,
&__gpio_c3,
};
#endif
//! \brief Setup the hardware of the stm32f4-discovery board. //! \brief Setup the hardware of the stm32f4-discovery board.
void board_init(void); void board_init(void);

View File

@ -14,7 +14,11 @@ struct stm32f4_pwm {
const struct stm32f4_gpio *pwm_gpio; const struct stm32f4_gpio *pwm_gpio;
TIM_HandleTypeDef *timer_handle; TIM_HandleTypeDef *timer_handle;
TIM_OC_InitTypeDef *output_compare_cfg; TIM_OC_InitTypeDef *output_compare_cfg;
TIM_MasterConfigTypeDef *master_cfg;
TIM_IC_InitTypeDef *input_capture_init;
TIM_SlaveConfigTypeDef *slave_config;
uint32_t channel; uint32_t channel;
uint32_t timer_src_frequency_MHz;
}; };
#pragma pack(pop) #pragma pack(pop)
@ -22,11 +26,15 @@ struct stm32f4_pwm {
int stm32f4_pwm_open(const void *pwm); int stm32f4_pwm_open(const void *pwm);
int stm32f4_pwm_close(const void *pwm); int stm32f4_pwm_close(const void *pwm);
int stm32f4_pwm_set_duty_cycle(const void *pwm, unsigned int duty_cycle_percent); int stm32f4_pwm_set_duty_cycle(const void *pwm, unsigned int duty_cycle_percent);
int stm32f4_pwm_get_period_ns(const void *pwm);
int stm32f4_pwm_get_pulse_width_ns(const void *pwm);
static const struct pwm_fp stm32f4_pwm_fp = { static const struct pwm_fp stm32f4_pwm_fp = {
.open = stm32f4_pwm_open, .open = stm32f4_pwm_open,
.close = stm32f4_pwm_close, .close = stm32f4_pwm_close,
.set_duty_cycle = stm32f4_pwm_set_duty_cycle, .set_duty_cycle = stm32f4_pwm_set_duty_cycle,
.get_period = stm32f4_pwm_get_period_ns,
.get_pulse_width = stm32f4_pwm_get_pulse_width_ns,
}; };
#endif /* SOURCE_FIRMWARE_ARCH_STM32F4XX_DRIVER_INCLUDE_STM32F4_PWM_H_ */ #endif /* SOURCE_FIRMWARE_ARCH_STM32F4XX_DRIVER_INCLUDE_STM32F4_PWM_H_ */

View File

@ -9,53 +9,158 @@
#include "stm32f4xx.h" #include "stm32f4xx.h"
#include "isr.h"
#include "gpio.h" #include "gpio.h"
#include "stm32f4_gpio.h" #include "stm32f4_gpio.h"
#include "pwm.h" #include "pwm.h"
#include "stm32f4_pwm.h" #include "stm32f4_pwm.h"
#pragma pack(push) struct stm32f4_pwm_channel_object {
#pragma pack(1) struct stm32f4_pwm *pwm;
struct stm32f4_pwm_object { uint32_t period;
uint8_t used_channels; uint32_t period_start;
uint32_t channel_1_max_period; uint32_t pulse;
uint32_t channel_2_max_period; uint32_t pulse_start;
uint32_t channel_3_max_period; };
uint32_t channel_4_max_period;
struct stm32f4_pwm_timer_object {
struct stm32f4_pwm_channel_object channel_1;
struct stm32f4_pwm_channel_object channel_2;
struct stm32f4_pwm_channel_object channel_3;
struct stm32f4_pwm_channel_object channel_4;
};
struct stm32f4_pwm_object {
struct stm32f4_pwm_timer_object timer_2;
struct stm32f4_pwm_timer_object timer_4;
struct stm32f4_pwm_timer_object timer_5;
};
static volatile struct stm32f4_pwm_object pwm_object = {
.timer_2.channel_1.pwm = NULL,
.timer_2.channel_1.period = 0,
.timer_2.channel_1.period_start = 0,
.timer_2.channel_1.pulse = 0,
.timer_2.channel_1.pulse_start = 0,
.timer_2.channel_2.pwm = NULL,
.timer_2.channel_2.period = 0,
.timer_2.channel_2.period_start = 0,
.timer_2.channel_2.pulse = 0,
.timer_2.channel_2.pulse_start = 0,
.timer_2.channel_3.pwm = NULL,
.timer_2.channel_3.period = 0,
.timer_2.channel_3.period_start = 0,
.timer_2.channel_3.pulse = 0,
.timer_2.channel_3.pulse_start = 0,
.timer_2.channel_4.pwm = NULL,
.timer_2.channel_4.period = 0,
.timer_2.channel_4.period_start = 0,
.timer_2.channel_4.pulse = 0,
.timer_2.channel_4.pulse_start = 0,
.timer_4.channel_1.pwm = NULL,
.timer_4.channel_1.period = 0,
.timer_4.channel_1.period_start = 0,
.timer_4.channel_1.pulse = 0,
.timer_4.channel_1.pulse_start = 0,
.timer_4.channel_2.pwm = NULL,
.timer_4.channel_2.period = 0,
.timer_4.channel_2.period_start = 0,
.timer_4.channel_2.pulse = 0,
.timer_4.channel_2.pulse_start = 0,
.timer_4.channel_3.pwm = NULL,
.timer_4.channel_3.period = 0,
.timer_4.channel_3.period_start = 0,
.timer_4.channel_3.pulse = 0,
.timer_4.channel_3.pulse_start = 0,
.timer_4.channel_4.pwm = NULL,
.timer_4.channel_4.period = 0,
.timer_4.channel_4.period_start = 0,
.timer_4.channel_4.pulse = 0,
.timer_4.channel_4.pulse_start = 0,
.timer_5.channel_1.pwm = NULL,
.timer_5.channel_1.period = 0,
.timer_5.channel_1.period_start = 0,
.timer_5.channel_1.pulse = 0,
.timer_5.channel_1.pulse_start = 0,
.timer_5.channel_2.pwm = NULL,
.timer_5.channel_2.period = 0,
.timer_5.channel_2.period_start = 0,
.timer_5.channel_2.pulse = 0,
.timer_5.channel_2.pulse_start = 0,
.timer_5.channel_3.pwm = NULL,
.timer_5.channel_3.period = 0,
.timer_5.channel_3.period_start = 0,
.timer_5.channel_3.pulse = 0,
.timer_5.channel_3.pulse_start = 0,
.timer_5.channel_4.pwm = NULL,
.timer_5.channel_4.period = 0,
.timer_5.channel_4.period_start = 0,
.timer_5.channel_4.pulse = 0,
.timer_5.channel_4.pulse_start = 0,
}; };
#pragma pack(pop)
int stm32f4_pwm_open(const void *pwm) int stm32f4_pwm_open(const void *pwm)
{ {
if(NULL == pwm) if(NULL == pwm)
return -1; return -1;
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm; struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
IRQn_Type irq_type = TIM2_IRQn;
stm32f4_gpio_open(this->pwm_gpio); stm32f4_gpio_open(this->pwm_gpio);
if(this->timer_handle->Instance == TIM2) {
__HAL_RCC_TIM2_CLK_ENABLE();
irq_type = TIM2_IRQn;
if(this->channel == TIM_CHANNEL_1)
pwm_object.timer_2.channel_1.pwm = this;
else if(this->channel == TIM_CHANNEL_2)
pwm_object.timer_2.channel_2.pwm = this;
else if(this->channel == TIM_CHANNEL_3)
pwm_object.timer_2.channel_3.pwm = this;
else if(this->channel == TIM_CHANNEL_4)
pwm_object.timer_2.channel_4.pwm = this;
}
if(this->timer_handle->Instance == TIM4) { if(this->timer_handle->Instance == TIM4) {
__HAL_RCC_TIM4_CLK_ENABLE(); __HAL_RCC_TIM4_CLK_ENABLE();
irq_type = TIM4_IRQn;
if(this->channel == TIM_CHANNEL_1)
pwm_object.timer_4.channel_1.pwm = this;
else if(this->channel == TIM_CHANNEL_2)
pwm_object.timer_4.channel_2.pwm = this;
else if(this->channel == TIM_CHANNEL_3)
pwm_object.timer_4.channel_3.pwm = this;
else if(this->channel == TIM_CHANNEL_4)
pwm_object.timer_4.channel_4.pwm = this;
}
if(this->timer_handle->Instance == TIM5) {
__HAL_RCC_TIM5_CLK_ENABLE();
irq_type = TIM5_IRQn;
if(this->channel == TIM_CHANNEL_1)
pwm_object.timer_5.channel_1.pwm = this;
else if(this->channel == TIM_CHANNEL_2)
pwm_object.timer_5.channel_2.pwm = this;
else if(this->channel == TIM_CHANNEL_3)
pwm_object.timer_5.channel_3.pwm = this;
else if(this->channel == TIM_CHANNEL_4)
pwm_object.timer_5.channel_4.pwm = this;
} }
HAL_TIM_PWM_Init(this->timer_handle);
HAL_TIM_PWM_ConfigChannel(this->timer_handle, this->output_compare_cfg, this->channel);
TIM_MasterConfigTypeDef sMasterConfig;
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(this->timer_handle, &sMasterConfig);
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(this->timer_handle, &sBreakDeadTimeConfig);
HAL_TIM_Base_Start(this->timer_handle); HAL_TIM_Base_Start(this->timer_handle);
HAL_TIM_PWM_Start(this->timer_handle, this->channel); if((NULL != this->output_compare_cfg) && (NULL != this->master_cfg)) {
/* pwm output */
HAL_TIM_PWM_Init(this->timer_handle);
HAL_TIM_PWM_ConfigChannel(this->timer_handle, this->output_compare_cfg, this->channel);
HAL_TIMEx_MasterConfigSynchronization(this->timer_handle, this->master_cfg);
HAL_TIM_PWM_Start(this->timer_handle, this->channel);
}
else if((NULL != this->input_capture_init) && (NULL != this->slave_config)) {
/* pwm input */
HAL_NVIC_SetPriority(irq_type, 5, 1);
HAL_TIM_IC_Init(this->timer_handle);
HAL_TIM_IC_ConfigChannel(this->timer_handle, this->input_capture_init, this->channel);
HAL_TIM_SlaveConfigSynchronization(this->timer_handle, this->slave_config);
HAL_TIM_IC_Start_IT(this->timer_handle, this->channel);
HAL_NVIC_EnableIRQ(irq_type);
}
return 0; return 0;
} }
@ -66,7 +171,12 @@ int stm32f4_pwm_close(const void *pwm)
stm32f4_pwm_set_duty_cycle(pwm, 0); stm32f4_pwm_set_duty_cycle(pwm, 0);
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm; struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
HAL_TIM_Base_Stop(this->timer_handle); HAL_TIM_Base_Stop(this->timer_handle);
HAL_TIM_PWM_Stop(this->timer_handle, this->channel); if((NULL != this->output_compare_cfg) && (NULL != this->master_cfg)) {
HAL_TIM_PWM_Stop(this->timer_handle, this->channel);
}
else if((NULL != this->input_capture_init) && (NULL != this->slave_config)) {
HAL_TIM_IC_Stop_IT(this->timer_handle, this->channel);
}
return 0; return 0;
} }
@ -81,3 +191,259 @@ int stm32f4_pwm_set_duty_cycle(const void *pwm, unsigned int duty_cycle_percent)
return 0; return 0;
} }
int stm32f4_pwm_get_period_ns(const void *pwm)
{
if(NULL == pwm)
return -1;
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
int ret = 0;
if(this->timer_handle->Instance == TIM2) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_2.channel_1.period;
return ret * pwm_object.timer_2.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_2.channel_2.period;
return ret * pwm_object.timer_2.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_2.channel_3.period;
return ret * pwm_object.timer_2.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_2.channel_4.period;
return ret * pwm_object.timer_2.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM4) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_4.channel_1.period;
return ret * pwm_object.timer_4.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_4.channel_2.period;
return ret * pwm_object.timer_4.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_4.channel_3.period;
return ret * pwm_object.timer_4.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_4.channel_4.period;
return ret * pwm_object.timer_4.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM5) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_5.channel_1.period;
return ret * pwm_object.timer_5.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_5.channel_2.period;
return ret * pwm_object.timer_5.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_5.channel_3.period;
return ret * pwm_object.timer_5.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_5.channel_4.period;
return ret * pwm_object.timer_5.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_4.pwm->timer_src_frequency_MHz;
}
}
return 0;
}
int stm32f4_pwm_get_pulse_width_ns(const void *pwm)
{
if(NULL == pwm)
return -1;
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
int ret = 0;
if(this->timer_handle->Instance == TIM2) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_2.channel_1.pulse;
return ret * pwm_object.timer_2.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_2.channel_2.pulse;
return ret * pwm_object.timer_2.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_2.channel_3.pulse;
return ret * pwm_object.timer_2.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_2.channel_4.pulse;
return ret * pwm_object.timer_2.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM4) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_4.channel_1.pulse;
return ret * pwm_object.timer_4.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_4.channel_2.pulse;
return ret * pwm_object.timer_4.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_4.channel_3.pulse;
return ret * pwm_object.timer_4.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_4.channel_4.pulse;
return ret * pwm_object.timer_4.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM5) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_5.channel_1.pulse;
return ret * pwm_object.timer_5.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_5.channel_2.pulse;
return ret * pwm_object.timer_5.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_5.channel_3.pulse;
return ret * pwm_object.timer_5.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_5.channel_4.pulse;
return ret * pwm_object.timer_5.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_4.pwm->timer_src_frequency_MHz;
}
}
return 0;
}
static void handle_irq_tim2_cc1(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 1 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC1) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC1) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC1);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR1_CC1S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR1;
if(pwm_object.timer_2.channel_1.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_1.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_1.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_1.period_start)
pwm_object.timer_2.channel_1.period = read - pwm_object.timer_2.channel_1.period_start;
pwm_object.timer_2.channel_1.period_start = read;
pwm_object.timer_2.channel_1.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_1.pulse_start)
pwm_object.timer_2.channel_1.pulse = read - pwm_object.timer_2.channel_1.pulse_start;
}
}
}
}
}
}
static void handle_irq_tim2_cc2(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 2 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC2) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC2) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC2);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR1_CC2S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR2;
if(pwm_object.timer_2.channel_2.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_2.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_2.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_2.period_start)
pwm_object.timer_2.channel_2.period = read - pwm_object.timer_2.channel_2.period_start;
pwm_object.timer_2.channel_2.period_start = read;
pwm_object.timer_2.channel_2.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_2.pulse_start)
pwm_object.timer_2.channel_2.pulse = read - pwm_object.timer_2.channel_2.pulse_start;
}
}
}
}
}
}
static void handle_irq_tim2_cc3(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 3 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC3) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC3) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC3);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR3;
if(pwm_object.timer_2.channel_3.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_3.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_3.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_3.period_start)
pwm_object.timer_2.channel_3.period = read - pwm_object.timer_2.channel_3.period_start;
pwm_object.timer_2.channel_3.period_start = read;
pwm_object.timer_2.channel_3.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_3.pulse_start)
pwm_object.timer_2.channel_3.pulse = read - pwm_object.timer_2.channel_3.pulse_start;
}
}
}
}
}
}
static void handle_irq_tim2_cc4(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 4 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC4) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC4) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC4);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR4;
if(pwm_object.timer_2.channel_4.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_4.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_4.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_4.period_start)
pwm_object.timer_2.channel_4.period = read - pwm_object.timer_2.channel_4.period_start;
pwm_object.timer_2.channel_4.period_start = read;
pwm_object.timer_2.channel_4.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_4.pulse_start)
pwm_object.timer_2.channel_4.pulse = read - pwm_object.timer_2.channel_4.pulse_start;
}
}
}
}
}
}
void TIM2_IRQHandler(void)
{
enter_isr();
handle_irq_tim2_cc1(pwm_object.timer_2.channel_1.pwm->timer_handle);
handle_irq_tim2_cc2(pwm_object.timer_2.channel_2.pwm->timer_handle);
handle_irq_tim2_cc3(pwm_object.timer_2.channel_3.pwm->timer_handle);
handle_irq_tim2_cc4(pwm_object.timer_2.channel_4.pwm->timer_handle);
exit_isr();
}

View File

@ -157,7 +157,13 @@ int drv_ioctl(const struct driver *driver, unsigned int cmd, const void *data)
case DRIVER_TYPE_PWM: case DRIVER_TYPE_PWM:
if(cmd == IOCTL_PWM_SET_DUTY_CYCLE) { if(cmd == IOCTL_PWM_SET_DUTY_CYCLE) {
unsigned int *duty = (unsigned int *)data; unsigned int *duty = (unsigned int *)data;
pwm_set_duty_cycle((const struct pwm *)(driver->device_driver), *duty); return pwm_set_duty_cycle((const struct pwm *)(driver->device_driver), *duty);
}
else if(cmd == IOCTL_PWM_GET_PERIOD_NS) {
return pwm_get_period_ns((const struct pwm *)(driver->device_driver));
}
else if(cmd == IOCTL_PWM_GET_PULSE_WIDTH_NS) {
return pwm_get_pulse_width_ns((const struct pwm *)(driver->device_driver));
} }
break; break;
case DRIVER_TYPE_RTC: case DRIVER_TYPE_RTC:

View File

@ -14,22 +14,28 @@ typedef int (*pwm_fp_open_t)(const void*);
//! \brief Function pointer to the close function. //! \brief Function pointer to the close function.
typedef int (*pwm_fp_close_t)(const void*); typedef int (*pwm_fp_close_t)(const void*);
//! \brief Function pointer to the read function.
typedef int (*pwm_fp_set_duty_cycle_t)(const void*, unsigned int duty_cycle_percent); typedef int (*pwm_fp_set_duty_cycle_t)(const void*, unsigned int duty_cycle_percent);
typedef int (*pwm_fp_get_period_ns_t)(const void*);
typedef int (*pwm_fp_get_pulse_width_ns_t)(const void*);
struct pwm_fp { struct pwm_fp {
const pwm_fp_open_t open; const pwm_fp_open_t open;
const pwm_fp_close_t close; const pwm_fp_close_t close;
const pwm_fp_set_duty_cycle_t set_duty_cycle; const pwm_fp_set_duty_cycle_t set_duty_cycle;
const pwm_fp_get_period_ns_t get_period;
const pwm_fp_get_pulse_width_ns_t get_pulse_width;
}; };
struct pwm { struct pwm {
const void *arch_dep_device; //!< Architecture depended pwm device (i.e. stm32f10x_pwm_t). const void *arch_dep_device; //!< Architecture depended pwm device (i.e. stm32f10x_pwm_t).
const struct pwm_fp *fp; //!< Function pointer for the pwm driver access. const struct pwm_fp *fp; //!< Function pointer for the pwm driver access.
}; };
int pwm_open(const struct pwm *device); int pwm_open(const struct pwm *device);
int pwm_close(const struct pwm *device); int pwm_close(const struct pwm *device);
int pwm_set_duty_cycle(const struct pwm *device, unsigned int duty_cycle_percent); int pwm_set_duty_cycle(const struct pwm *device, unsigned int duty_cycle_percent);
int pwm_get_period_ns(const struct pwm *device);
int pwm_get_pulse_width_ns(const struct pwm *device);
#endif /* SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_PWM_H_ */ #endif /* SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_PWM_H_ */

View File

@ -31,3 +31,19 @@ int pwm_set_duty_cycle(const struct pwm *device, unsigned int duty_cycle_percent
pwm_fp_set_duty_cycle_t set = device->fp->set_duty_cycle; pwm_fp_set_duty_cycle_t set = device->fp->set_duty_cycle;
return set(device->arch_dep_device, duty_cycle_percent); return set(device->arch_dep_device, duty_cycle_percent);
} }
int pwm_get_period_ns(const struct pwm *device)
{
if(NULL == device)
return -1;
pwm_fp_get_period_ns_t get = device->fp->get_period;
return get(device->arch_dep_device);
}
int pwm_get_pulse_width_ns(const struct pwm *device)
{
if(NULL == device)
return -1;
pwm_fp_get_pulse_width_ns_t get = device->fp->get_pulse_width;
return get(device->arch_dep_device);
}

View File

@ -8,8 +8,8 @@
#ifndef ISR_H_ #ifndef ISR_H_
#define ISR_H_ #define ISR_H_
#ifdef ARCH_MSP430 #ifdef ARCH_STM32F4XX
#include "msp430_isr.h" #include "stm32f4xx_isr.h"
#endif #endif
#endif /* ISR_H_ */ #endif /* ISR_H_ */

View File

@ -8,7 +8,9 @@
#ifndef SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_DRIVER_H_ #ifndef SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_DRIVER_H_
#define SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_DRIVER_H_ #define SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_DRIVER_H_
#define IOCTL_PWM_SET_DUTY_CYCLE 0 #define IOCTL_PWM_SET_DUTY_CYCLE 0
#define IOCTL_PWM_GET_PERIOD_NS 1
#define IOCTL_PWM_GET_PULSE_WIDTH_NS 2
enum driver_type { enum driver_type {
DRIVER_TYPE_ADC, DRIVER_TYPE_ADC,

View File

@ -6,6 +6,8 @@
*/ */
#include <stdbool.h> #include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include "driver.h" #include "driver.h"
#include "board.h" #include "board.h"
@ -18,24 +20,52 @@
int main(void) int main(void)
{ {
char print_buffer[80];
drv_open(&pwm_1); drv_open(&pwm_1);
drv_open(&pwm_2); drv_open(&pwm_2);
drv_open(&pwm_3); drv_open(&pwm_3);
drv_open(&pwm_4); drv_open(&pwm_4);
drv_open(&pwm5_c2);
drv_open(&pwm2_c4);
drv_open(&uart_1);
while(1) { while(1) {
for(unsigned int duty = 0; duty < 100; duty++) { for(unsigned int duty = 0; duty < 100; duty++) {
drv_ioctl(&pwm_1, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_1, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
drv_ioctl(&pwm_2, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_2, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
drv_ioctl(&pwm_3, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_3, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
drv_ioctl(&pwm_4, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_4, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
sleep_ms(10); sleep_ms(100);
int pulse = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PULSE_WIDTH_NS, NULL);
int period = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PERIOD_NS, NULL);
int frq = 1000000 / period;
sprintf(print_buffer, "Frequency: %dHz\r\n", frq);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
int dist = 343 * pulse / 1000 / 2;
sprintf(print_buffer, "distance: %d mm\r\n", dist);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
} }
for(unsigned int duty = 98; duty > 0; duty--) { for(unsigned int duty = 98; duty > 0; duty--) {
drv_ioctl(&pwm_1, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_1, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
drv_ioctl(&pwm_2, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_2, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
drv_ioctl(&pwm_3, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_3, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
drv_ioctl(&pwm_4, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty); drv_ioctl(&pwm_4, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
sleep_ms(10); sleep_ms(100);
int pulse = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PULSE_WIDTH_NS, NULL);
int period = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PERIOD_NS, NULL);
int frq = 1000000 / period;
sprintf(print_buffer, "Frequency: %dHz\r\n", frq);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
int dist = 343 * pulse / 1000 / 2;
sprintf(print_buffer, "distance: %d mm\r\n", dist);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
} }
} }