test prog implementation moved to real driver/board implementations

This commit is contained in:
Thomas Klaehn 2016-08-29 16:12:51 +02:00
parent 1407b35ce8
commit 13c416a2ba
8 changed files with 522 additions and 130 deletions

View File

@ -193,6 +193,7 @@ static const struct stm32f4_gpio t4c4_gpio = {
static struct stm32f4_pwm str32f4_pwm_4 = {
.pwm_gpio = &t4c4_gpio,
.timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_4,
@ -228,6 +229,7 @@ static const struct stm32f4_gpio stm32f4_pwm_t4c3_gpio = {
static struct stm32f4_pwm str32f4_pwm_3 = {
.pwm_gpio = &stm32f4_pwm_t4c3_gpio,
.timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_3,
@ -263,6 +265,7 @@ static const struct stm32f4_gpio stm32f4_pwm_t4c2_gpio = {
static struct stm32f4_pwm str32f4_pwm_2 = {
.pwm_gpio = &stm32f4_pwm_t4c2_gpio,
.timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_2,
@ -298,6 +301,7 @@ static const struct stm32f4_gpio stm32f4_pwm_t4c1_gpio = {
static struct stm32f4_pwm str32f4_pwm_1 = {
.pwm_gpio = &stm32f4_pwm_t4c1_gpio,
.timer_handle = &tim4_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t4_output_compare_cfg,
.master_cfg = &t4_master_cfg,
.channel = TIM_CHANNEL_1,
@ -361,6 +365,7 @@ static const struct stm32f4_gpio t5c2_gpio = {
static struct stm32f4_pwm str32f4_pwm5_c2 = {
.pwm_gpio = &t5c2_gpio,
.timer_handle = &tim5_handle,
.timer_src_frequency_MHz = 84,
.output_compare_cfg = &t5_output_compare_cfg,
.master_cfg = &t5_master_cfg,
.channel = TIM_CHANNEL_2,
@ -380,6 +385,69 @@ const struct driver pwm5_c2 = {
&pwm5_ch2,
};
// PWM2 CHANNEL 4
/* apb1 clock = 84MHz */
/* period_reg = src_clk / presc / cnt_clk */
/* 1679 = 84MHZ / 1000 / 50Hz - 1 */
static TIM_HandleTypeDef t2_handle = {
.Instance = TIM2,
.Init.Prescaler = 1000,
.Init.CounterMode = TIM_COUNTERMODE_UP,
.Init.Period = 0xffff,
.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1,
.Init.RepetitionCounter = 0,
};
static TIM_IC_InitTypeDef t2_input_capture_init = {
.ICPrescaler = TIM_ICPSC_DIV1,
.ICFilter = 0,
.ICPolarity = TIM_ICPOLARITY_BOTHEDGE,
.ICSelection = TIM_ICSELECTION_INDIRECTTI,
};
static TIM_SlaveConfigTypeDef t2_slave_config = {
.SlaveMode = TIM_SLAVEMODE_RESET,
.InputTrigger = TIM_TS_TI1FP1,
.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE,
.TriggerFilter = 0,
};
static GPIO_InitTypeDef port_cfg_b10 = {
.Pin = GPIO_PIN_10,
.Mode = GPIO_MODE_AF_OD,
.Speed = GPIO_SPEED_FREQ_HIGH,
.Pull = GPIO_NOPULL,
.Alternate = GPIO_AF1_TIM2,
};
static const struct stm32f4_gpio b10_gpio = {
.port = GPIOB,
.pin = &port_cfg_b10,
};
static struct stm32f4_pwm stm32f4_pwm2_c4 = {
.pwm_gpio = &b10_gpio,
.timer_handle = &t2_handle,
.timer_src_frequency_MHz = 84,
.input_capture_init = &t2_input_capture_init,
.slave_config = &t2_slave_config,
.channel = TIM_CHANNEL_4,
};
static const struct pwm pwm2_ch4 = {
.arch_dep_device = &stm32f4_pwm2_c4,
.fp = &stm32f4_pwm_fp,
};
#ifdef TEST_APP
static const struct driver pwm2_c4 = {
#else
const struct driver pwm2_c4 = {
#endif
DRIVER_TYPE_PWM,
&pwm2_ch4,
};
// UART 1
static const GPIO_InitTypeDef port_cfg_uart1 = {
.Pin = GPIO_PIN_6 | GPIO_PIN_7,

View File

@ -15,7 +15,10 @@ struct stm32f4_pwm {
TIM_HandleTypeDef *timer_handle;
TIM_OC_InitTypeDef *output_compare_cfg;
TIM_MasterConfigTypeDef *master_cfg;
TIM_IC_InitTypeDef *input_capture_init;
TIM_SlaveConfigTypeDef *slave_config;
uint32_t channel;
uint32_t timer_src_frequency_MHz;
};
#pragma pack(pop)
@ -23,11 +26,15 @@ struct stm32f4_pwm {
int stm32f4_pwm_open(const void *pwm);
int stm32f4_pwm_close(const void *pwm);
int stm32f4_pwm_set_duty_cycle(const void *pwm, unsigned int duty_cycle_percent);
int stm32f4_pwm_get_period_ns(const void *pwm);
int stm32f4_pwm_get_pulse_width_ns(const void *pwm);
static const struct pwm_fp stm32f4_pwm_fp = {
.open = stm32f4_pwm_open,
.close = stm32f4_pwm_close,
.set_duty_cycle = stm32f4_pwm_set_duty_cycle,
.get_period = stm32f4_pwm_get_period_ns,
.get_pulse_width = stm32f4_pwm_get_pulse_width_ns,
};
#endif /* SOURCE_FIRMWARE_ARCH_STM32F4XX_DRIVER_INCLUDE_STM32F4_PWM_H_ */

View File

@ -9,42 +9,158 @@
#include "stm32f4xx.h"
#include "isr.h"
#include "gpio.h"
#include "stm32f4_gpio.h"
#include "pwm.h"
#include "stm32f4_pwm.h"
struct stm32f4_pwm_channel_object {
struct stm32f4_pwm *pwm;
uint32_t period;
uint32_t period_start;
uint32_t pulse;
uint32_t pulse_start;
};
struct stm32f4_pwm_timer_object {
struct stm32f4_pwm_channel_object channel_1;
struct stm32f4_pwm_channel_object channel_2;
struct stm32f4_pwm_channel_object channel_3;
struct stm32f4_pwm_channel_object channel_4;
};
struct stm32f4_pwm_object {
struct stm32f4_pwm_timer_object timer_2;
struct stm32f4_pwm_timer_object timer_4;
struct stm32f4_pwm_timer_object timer_5;
};
static volatile struct stm32f4_pwm_object pwm_object = {
.timer_2.channel_1.pwm = NULL,
.timer_2.channel_1.period = 0,
.timer_2.channel_1.period_start = 0,
.timer_2.channel_1.pulse = 0,
.timer_2.channel_1.pulse_start = 0,
.timer_2.channel_2.pwm = NULL,
.timer_2.channel_2.period = 0,
.timer_2.channel_2.period_start = 0,
.timer_2.channel_2.pulse = 0,
.timer_2.channel_2.pulse_start = 0,
.timer_2.channel_3.pwm = NULL,
.timer_2.channel_3.period = 0,
.timer_2.channel_3.period_start = 0,
.timer_2.channel_3.pulse = 0,
.timer_2.channel_3.pulse_start = 0,
.timer_2.channel_4.pwm = NULL,
.timer_2.channel_4.period = 0,
.timer_2.channel_4.period_start = 0,
.timer_2.channel_4.pulse = 0,
.timer_2.channel_4.pulse_start = 0,
.timer_4.channel_1.pwm = NULL,
.timer_4.channel_1.period = 0,
.timer_4.channel_1.period_start = 0,
.timer_4.channel_1.pulse = 0,
.timer_4.channel_1.pulse_start = 0,
.timer_4.channel_2.pwm = NULL,
.timer_4.channel_2.period = 0,
.timer_4.channel_2.period_start = 0,
.timer_4.channel_2.pulse = 0,
.timer_4.channel_2.pulse_start = 0,
.timer_4.channel_3.pwm = NULL,
.timer_4.channel_3.period = 0,
.timer_4.channel_3.period_start = 0,
.timer_4.channel_3.pulse = 0,
.timer_4.channel_3.pulse_start = 0,
.timer_4.channel_4.pwm = NULL,
.timer_4.channel_4.period = 0,
.timer_4.channel_4.period_start = 0,
.timer_4.channel_4.pulse = 0,
.timer_4.channel_4.pulse_start = 0,
.timer_5.channel_1.pwm = NULL,
.timer_5.channel_1.period = 0,
.timer_5.channel_1.period_start = 0,
.timer_5.channel_1.pulse = 0,
.timer_5.channel_1.pulse_start = 0,
.timer_5.channel_2.pwm = NULL,
.timer_5.channel_2.period = 0,
.timer_5.channel_2.period_start = 0,
.timer_5.channel_2.pulse = 0,
.timer_5.channel_2.pulse_start = 0,
.timer_5.channel_3.pwm = NULL,
.timer_5.channel_3.period = 0,
.timer_5.channel_3.period_start = 0,
.timer_5.channel_3.pulse = 0,
.timer_5.channel_3.pulse_start = 0,
.timer_5.channel_4.pwm = NULL,
.timer_5.channel_4.period = 0,
.timer_5.channel_4.period_start = 0,
.timer_5.channel_4.pulse = 0,
.timer_5.channel_4.pulse_start = 0,
};
int stm32f4_pwm_open(const void *pwm)
{
if(NULL == pwm)
return -1;
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
IRQn_Type irq_type = TIM2_IRQn;
stm32f4_gpio_open(this->pwm_gpio);
if(this->timer_handle->Instance == TIM2) {
__HAL_RCC_TIM2_CLK_ENABLE();
irq_type = TIM2_IRQn;
if(this->channel == TIM_CHANNEL_1)
pwm_object.timer_2.channel_1.pwm = this;
else if(this->channel == TIM_CHANNEL_2)
pwm_object.timer_2.channel_2.pwm = this;
else if(this->channel == TIM_CHANNEL_3)
pwm_object.timer_2.channel_3.pwm = this;
else if(this->channel == TIM_CHANNEL_4)
pwm_object.timer_2.channel_4.pwm = this;
}
if(this->timer_handle->Instance == TIM4) {
__HAL_RCC_TIM4_CLK_ENABLE();
irq_type = TIM4_IRQn;
if(this->channel == TIM_CHANNEL_1)
pwm_object.timer_4.channel_1.pwm = this;
else if(this->channel == TIM_CHANNEL_2)
pwm_object.timer_4.channel_2.pwm = this;
else if(this->channel == TIM_CHANNEL_3)
pwm_object.timer_4.channel_3.pwm = this;
else if(this->channel == TIM_CHANNEL_4)
pwm_object.timer_4.channel_4.pwm = this;
}
if(this->timer_handle->Instance == TIM5) {
__HAL_RCC_TIM5_CLK_ENABLE();
irq_type = TIM5_IRQn;
if(this->channel == TIM_CHANNEL_1)
pwm_object.timer_5.channel_1.pwm = this;
else if(this->channel == TIM_CHANNEL_2)
pwm_object.timer_5.channel_2.pwm = this;
else if(this->channel == TIM_CHANNEL_3)
pwm_object.timer_5.channel_3.pwm = this;
else if(this->channel == TIM_CHANNEL_4)
pwm_object.timer_5.channel_4.pwm = this;
}
HAL_TIM_PWM_Init(this->timer_handle);
HAL_TIM_PWM_ConfigChannel(this->timer_handle, this->output_compare_cfg, this->channel);
HAL_TIMEx_MasterConfigSynchronization(this->timer_handle, this->master_cfg);
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(this->timer_handle, &sBreakDeadTimeConfig);
HAL_TIM_Base_Start(this->timer_handle);
HAL_TIM_PWM_Start(this->timer_handle, this->channel);
if((NULL != this->output_compare_cfg) && (NULL != this->master_cfg)) {
/* pwm output */
HAL_TIM_PWM_Init(this->timer_handle);
HAL_TIM_PWM_ConfigChannel(this->timer_handle, this->output_compare_cfg, this->channel);
HAL_TIMEx_MasterConfigSynchronization(this->timer_handle, this->master_cfg);
HAL_TIM_PWM_Start(this->timer_handle, this->channel);
}
else if((NULL != this->input_capture_init) && (NULL != this->slave_config)) {
/* pwm input */
HAL_NVIC_SetPriority(irq_type, 5, 1);
HAL_TIM_IC_Init(this->timer_handle);
HAL_TIM_IC_ConfigChannel(this->timer_handle, this->input_capture_init, this->channel);
HAL_TIM_SlaveConfigSynchronization(this->timer_handle, this->slave_config);
HAL_TIM_IC_Start_IT(this->timer_handle, this->channel);
HAL_NVIC_EnableIRQ(irq_type);
}
return 0;
}
@ -55,7 +171,12 @@ int stm32f4_pwm_close(const void *pwm)
stm32f4_pwm_set_duty_cycle(pwm, 0);
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
HAL_TIM_Base_Stop(this->timer_handle);
HAL_TIM_PWM_Stop(this->timer_handle, this->channel);
if((NULL != this->output_compare_cfg) && (NULL != this->master_cfg)) {
HAL_TIM_PWM_Stop(this->timer_handle, this->channel);
}
else if((NULL != this->input_capture_init) && (NULL != this->slave_config)) {
HAL_TIM_IC_Stop_IT(this->timer_handle, this->channel);
}
return 0;
}
@ -70,3 +191,259 @@ int stm32f4_pwm_set_duty_cycle(const void *pwm, unsigned int duty_cycle_percent)
return 0;
}
int stm32f4_pwm_get_period_ns(const void *pwm)
{
if(NULL == pwm)
return -1;
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
int ret = 0;
if(this->timer_handle->Instance == TIM2) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_2.channel_1.period;
return ret * pwm_object.timer_2.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_2.channel_2.period;
return ret * pwm_object.timer_2.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_2.channel_3.period;
return ret * pwm_object.timer_2.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_2.channel_4.period;
return ret * pwm_object.timer_2.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM4) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_4.channel_1.period;
return ret * pwm_object.timer_4.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_4.channel_2.period;
return ret * pwm_object.timer_4.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_4.channel_3.period;
return ret * pwm_object.timer_4.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_4.channel_4.period;
return ret * pwm_object.timer_4.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM5) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_5.channel_1.period;
return ret * pwm_object.timer_5.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_5.channel_2.period;
return ret * pwm_object.timer_5.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_5.channel_3.period;
return ret * pwm_object.timer_5.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_5.channel_4.period;
return ret * pwm_object.timer_5.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_4.pwm->timer_src_frequency_MHz;
}
}
return 0;
}
int stm32f4_pwm_get_pulse_width_ns(const void *pwm)
{
if(NULL == pwm)
return -1;
struct stm32f4_pwm *this = (struct stm32f4_pwm *)pwm;
int ret = 0;
if(this->timer_handle->Instance == TIM2) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_2.channel_1.pulse;
return ret * pwm_object.timer_2.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_2.channel_2.pulse;
return ret * pwm_object.timer_2.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_2.channel_3.pulse;
return ret * pwm_object.timer_2.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_2.channel_4.pulse;
return ret * pwm_object.timer_2.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_2.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM4) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_4.channel_1.pulse;
return ret * pwm_object.timer_4.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_4.channel_2.pulse;
return ret * pwm_object.timer_4.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_4.channel_3.pulse;
return ret * pwm_object.timer_4.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_4.channel_4.pulse;
return ret * pwm_object.timer_4.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_4.channel_4.pwm->timer_src_frequency_MHz;
}
}
else if(this->timer_handle->Instance == TIM5) {
if(this->channel == TIM_CHANNEL_1) {
ret = (int)pwm_object.timer_5.channel_1.pulse;
return ret * pwm_object.timer_5.channel_1.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_1.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_2) {
ret = (int)pwm_object.timer_5.channel_2.pulse;
return ret * pwm_object.timer_5.channel_2.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_2.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_3) {
ret = (int)pwm_object.timer_5.channel_3.pulse;
return ret * pwm_object.timer_5.channel_3.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_3.pwm->timer_src_frequency_MHz;
}
else if(this->channel == TIM_CHANNEL_4) {
ret = (int)pwm_object.timer_5.channel_4.pulse;
return ret * pwm_object.timer_5.channel_4.pwm->timer_handle->Init.Prescaler / pwm_object.timer_5.channel_4.pwm->timer_src_frequency_MHz;
}
}
return 0;
}
static void handle_irq_tim2_cc1(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 1 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC1) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC1) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC1);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR1_CC1S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR1;
if(pwm_object.timer_2.channel_1.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_1.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_1.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_1.period_start)
pwm_object.timer_2.channel_1.period = read - pwm_object.timer_2.channel_1.period_start;
pwm_object.timer_2.channel_1.period_start = read;
pwm_object.timer_2.channel_1.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_1.pulse_start)
pwm_object.timer_2.channel_1.pulse = read - pwm_object.timer_2.channel_1.pulse_start;
}
}
}
}
}
}
static void handle_irq_tim2_cc2(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 2 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC2) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC2) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC2);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR1_CC2S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR2;
if(pwm_object.timer_2.channel_2.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_2.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_2.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_2.period_start)
pwm_object.timer_2.channel_2.period = read - pwm_object.timer_2.channel_2.period_start;
pwm_object.timer_2.channel_2.period_start = read;
pwm_object.timer_2.channel_2.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_2.pulse_start)
pwm_object.timer_2.channel_2.pulse = read - pwm_object.timer_2.channel_2.pulse_start;
}
}
}
}
}
}
static void handle_irq_tim2_cc3(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 3 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC3) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC3) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC3);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR3;
if(pwm_object.timer_2.channel_3.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_3.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_3.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_3.period_start)
pwm_object.timer_2.channel_3.period = read - pwm_object.timer_2.channel_3.period_start;
pwm_object.timer_2.channel_3.period_start = read;
pwm_object.timer_2.channel_3.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_3.pulse_start)
pwm_object.timer_2.channel_3.pulse = read - pwm_object.timer_2.channel_3.pulse_start;
}
}
}
}
}
}
static void handle_irq_tim2_cc4(TIM_HandleTypeDef *timer_handle)
{
/* Capture compare 4 event */
if(__HAL_TIM_GET_FLAG(timer_handle, TIM_FLAG_CC4) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(timer_handle, TIM_IT_CC4) != RESET) {
__HAL_TIM_CLEAR_IT(timer_handle, TIM_IT_CC4);
/* Input capture event */
if((timer_handle->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) {
uint32_t read = timer_handle->Instance->CCR4;
if(pwm_object.timer_2.channel_4.pwm->input_capture_init->ICPolarity == TIM_ICPOLARITY_BOTHEDGE) {
GPIO_TypeDef* port = pwm_object.timer_2.channel_4.pwm->pwm_gpio->port;
uint16_t pin = pwm_object.timer_2.channel_4.pwm->pwm_gpio->pin->Pin;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(port, pin)) {
if(read > pwm_object.timer_2.channel_4.period_start)
pwm_object.timer_2.channel_4.period = read - pwm_object.timer_2.channel_4.period_start;
pwm_object.timer_2.channel_4.period_start = read;
pwm_object.timer_2.channel_4.pulse_start = read;
}
else {
if(read > pwm_object.timer_2.channel_4.pulse_start)
pwm_object.timer_2.channel_4.pulse = read - pwm_object.timer_2.channel_4.pulse_start;
}
}
}
}
}
}
void TIM2_IRQHandler(void)
{
enter_isr();
handle_irq_tim2_cc1(pwm_object.timer_2.channel_1.pwm->timer_handle);
handle_irq_tim2_cc2(pwm_object.timer_2.channel_2.pwm->timer_handle);
handle_irq_tim2_cc3(pwm_object.timer_2.channel_3.pwm->timer_handle);
handle_irq_tim2_cc4(pwm_object.timer_2.channel_4.pwm->timer_handle);
exit_isr();
}

View File

@ -157,7 +157,13 @@ int drv_ioctl(const struct driver *driver, unsigned int cmd, const void *data)
case DRIVER_TYPE_PWM:
if(cmd == IOCTL_PWM_SET_DUTY_CYCLE) {
unsigned int *duty = (unsigned int *)data;
pwm_set_duty_cycle((const struct pwm *)(driver->device_driver), *duty);
return pwm_set_duty_cycle((const struct pwm *)(driver->device_driver), *duty);
}
else if(cmd == IOCTL_PWM_GET_PERIOD_NS) {
return pwm_get_period_ns((const struct pwm *)(driver->device_driver));
}
else if(cmd == IOCTL_PWM_GET_PULSE_WIDTH_NS) {
return pwm_get_pulse_width_ns((const struct pwm *)(driver->device_driver));
}
break;
case DRIVER_TYPE_RTC:

View File

@ -14,22 +14,28 @@ typedef int (*pwm_fp_open_t)(const void*);
//! \brief Function pointer to the close function.
typedef int (*pwm_fp_close_t)(const void*);
//! \brief Function pointer to the read function.
typedef int (*pwm_fp_set_duty_cycle_t)(const void*, unsigned int duty_cycle_percent);
typedef int (*pwm_fp_get_period_ns_t)(const void*);
typedef int (*pwm_fp_get_pulse_width_ns_t)(const void*);
struct pwm_fp {
const pwm_fp_open_t open;
const pwm_fp_close_t close;
const pwm_fp_set_duty_cycle_t set_duty_cycle;
const pwm_fp_get_period_ns_t get_period;
const pwm_fp_get_pulse_width_ns_t get_pulse_width;
};
struct pwm {
const void *arch_dep_device; //!< Architecture depended pwm device (i.e. stm32f10x_pwm_t).
const struct pwm_fp *fp; //!< Function pointer for the pwm driver access.
const struct pwm_fp *fp; //!< Function pointer for the pwm driver access.
};
int pwm_open(const struct pwm *device);
int pwm_close(const struct pwm *device);
int pwm_set_duty_cycle(const struct pwm *device, unsigned int duty_cycle_percent);
int pwm_get_period_ns(const struct pwm *device);
int pwm_get_pulse_width_ns(const struct pwm *device);
#endif /* SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_PWM_H_ */

View File

@ -31,3 +31,19 @@ int pwm_set_duty_cycle(const struct pwm *device, unsigned int duty_cycle_percent
pwm_fp_set_duty_cycle_t set = device->fp->set_duty_cycle;
return set(device->arch_dep_device, duty_cycle_percent);
}
int pwm_get_period_ns(const struct pwm *device)
{
if(NULL == device)
return -1;
pwm_fp_get_period_ns_t get = device->fp->get_period;
return get(device->arch_dep_device);
}
int pwm_get_pulse_width_ns(const struct pwm *device)
{
if(NULL == device)
return -1;
pwm_fp_get_pulse_width_ns_t get = device->fp->get_pulse_width;
return get(device->arch_dep_device);
}

View File

@ -8,7 +8,9 @@
#ifndef SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_DRIVER_H_
#define SOURCE_FIRMWARE_KERNEL_DRIVER_INCLUDE_DRIVER_H_
#define IOCTL_PWM_SET_DUTY_CYCLE 0
#define IOCTL_PWM_SET_DUTY_CYCLE 0
#define IOCTL_PWM_GET_PERIOD_NS 1
#define IOCTL_PWM_GET_PULSE_WIDTH_NS 2
enum driver_type {
DRIVER_TYPE_ADC,

View File

@ -18,84 +18,20 @@
#include "list.h"
#include "shell.h"
static TIM_HandleTypeDef timer_handle = {
.Instance = TIM2,
.Init.Prescaler = 1000,
.Init.CounterMode = TIM_COUNTERMODE_UP,
.Init.Period = 0xffff,
.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1,
.Init.RepetitionCounter = 0,
};
static TIM_IC_InitTypeDef input_capture_init = {
.ICPrescaler = TIM_ICPSC_DIV1,
.ICFilter = 0,
// .ICPolarity = TIM_ICPOLARITY_FALLING,
.ICPolarity = TIM_ICPOLARITY_BOTHEDGE,
.ICSelection = TIM_ICSELECTION_INDIRECTTI,
};
static TIM_SlaveConfigTypeDef slave_config = {
.SlaveMode = TIM_SLAVEMODE_RESET,
.InputTrigger = TIM_TS_TI1FP1,
.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE,
.TriggerFilter = 0,
};
static GPIO_InitTypeDef port_cfg_b10 = {
.Pin = GPIO_PIN_10,
.Mode = GPIO_MODE_AF_OD,
.Speed = GPIO_SPEED_FREQ_HIGH,
.Pull = GPIO_NOPULL,
.Alternate = GPIO_AF1_TIM2,
};
static const struct stm32f4_gpio b10_gpio = {
.port = GPIOB,
.pin = &port_cfg_b10,
};
static const struct gpio __gpio_b10 = {
(void*)&b10_gpio,
&gpio_fp
};
static const struct driver gpio_b10 = {
DRIVER_TYPE_GPIO,
&__gpio_b10,
};
static int period = 0, period_start = 0, pulse = 0, pulse_start = 0;
void config_input(void)
{
__HAL_RCC_TIM2_CLK_ENABLE();
drv_open(&gpio_b10);
HAL_NVIC_SetPriority(TIM2_IRQn, 0, 1);
/* cfg timer */
HAL_TIM_IC_Init(&timer_handle);
HAL_TIM_IC_ConfigChannel(&timer_handle, &input_capture_init, TIM_CHANNEL_4);
HAL_TIM_SlaveConfigSynchronization(&timer_handle, &slave_config);
HAL_TIM_IC_Start_IT(&timer_handle, TIM_CHANNEL_4);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
}
int main(void)
{
char print_buffer[80];
drv_open(&pwm_1);
drv_open(&pwm_2);
drv_open(&pwm_3);
drv_open(&pwm_4);
drv_open(&pwm5_c2);
drv_open(&pwm2_c4);
drv_open(&uart_1);
config_input();
while(1) {
for(unsigned int duty = 0; duty < 100; duty++) {
drv_ioctl(&pwm_1, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
@ -104,12 +40,14 @@ int main(void)
drv_ioctl(&pwm_4, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
sleep_ms(100);
float dist = 84000.0 / pulse;
dist = 343.0 / dist;
dist /= 2.0;
dist *= 100; // m -> cm
int d = (int)dist;
sprintf(print_buffer, "distance: %d cm\r\n", d);
int pulse = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PULSE_WIDTH_NS, NULL);
int period = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PERIOD_NS, NULL);
int frq = 1000000 / period;
sprintf(print_buffer, "Frequency: %dHz\r\n", frq);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
int dist = 343 * pulse / 1000 / 2;
sprintf(print_buffer, "distance: %d mm\r\n", dist);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
}
for(unsigned int duty = 98; duty > 0; duty--) {
@ -119,45 +57,17 @@ int main(void)
drv_ioctl(&pwm_4, IOCTL_PWM_SET_DUTY_CYCLE, (const void *)&duty);
sleep_ms(100);
float dist = 84000.0 / pulse;
dist = 343.0 / dist;
dist /= 2.0;
dist *= 100; // m -> cm
int d = (int)dist;
sprintf(print_buffer, "distance: %d cm\r\n", d);
int pulse = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PULSE_WIDTH_NS, NULL);
int period = drv_ioctl(&pwm2_c4, IOCTL_PWM_GET_PERIOD_NS, NULL);
int frq = 1000000 / period;
sprintf(print_buffer, "Frequency: %dHz\r\n", frq);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
int dist = 343 * pulse / 1000 / 2;
sprintf(print_buffer, "distance: %d mm\r\n", dist);
drv_write(&uart_1, print_buffer, strlen(print_buffer));
}
}
return 0;
}
#include "isr.h"
void TIM2_IRQHandler(void)
{
enter_isr();
TIM_HandleTypeDef *htim = &timer_handle;
/* Capture compare 4 event */
if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) {
if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) !=RESET) {
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
/* Input capture event */
if((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) {
uint32_t ch4 = htim->Instance->CCR4;
if(GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_10)) {
if(ch4 > period_start)
period = ch4 - period_start;
period_start = ch4;
pulse_start = ch4;
}
else {
if(ch4 > pulse_start)
pulse = ch4 - pulse_start;
}
}
}
}
exit_isr();
}