initial commit
This commit is contained in:
243
source/firmware/arch/stm32f4xx/lib/stdperiph/src/misc.c
Executable file
243
source/firmware/arch/stm32f4xx/lib/stdperiph/src/misc.c
Executable file
@@ -0,0 +1,243 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file misc.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides all the miscellaneous firmware functions (add-on
|
||||
* to CMSIS functions).
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to configure Interrupts using driver
|
||||
* ===================================================================
|
||||
*
|
||||
* This section provide functions allowing to configure the NVIC interrupts (IRQ).
|
||||
* The Cortex-M4 exceptions are managed by CMSIS functions.
|
||||
*
|
||||
* 1. Configure the NVIC Priority Grouping using NVIC_PriorityGroupConfig()
|
||||
* function according to the following table.
|
||||
|
||||
* The table below gives the allowed values of the pre-emption priority and subpriority according
|
||||
* to the Priority Grouping configuration performed by NVIC_PriorityGroupConfig function
|
||||
* ==========================================================================================================================
|
||||
* NVIC_PriorityGroup | NVIC_IRQChannelPreemptionPriority | NVIC_IRQChannelSubPriority | Description
|
||||
* ==========================================================================================================================
|
||||
* NVIC_PriorityGroup_0 | 0 | 0-15 | 0 bits for pre-emption priority
|
||||
* | | | 4 bits for subpriority
|
||||
* --------------------------------------------------------------------------------------------------------------------------
|
||||
* NVIC_PriorityGroup_1 | 0-1 | 0-7 | 1 bits for pre-emption priority
|
||||
* | | | 3 bits for subpriority
|
||||
* --------------------------------------------------------------------------------------------------------------------------
|
||||
* NVIC_PriorityGroup_2 | 0-3 | 0-3 | 2 bits for pre-emption priority
|
||||
* | | | 2 bits for subpriority
|
||||
* --------------------------------------------------------------------------------------------------------------------------
|
||||
* NVIC_PriorityGroup_3 | 0-7 | 0-1 | 3 bits for pre-emption priority
|
||||
* | | | 1 bits for subpriority
|
||||
* --------------------------------------------------------------------------------------------------------------------------
|
||||
* NVIC_PriorityGroup_4 | 0-15 | 0 | 4 bits for pre-emption priority
|
||||
* | | | 0 bits for subpriority
|
||||
* ==========================================================================================================================
|
||||
*
|
||||
* 2. Enable and Configure the priority of the selected IRQ Channels using NVIC_Init()
|
||||
*
|
||||
* @note When the NVIC_PriorityGroup_0 is selected, IRQ pre-emption is no more possible.
|
||||
* The pending IRQ priority will be managed only by the subpriority.
|
||||
*
|
||||
* @note IRQ priority order (sorted by highest to lowest priority):
|
||||
* - Lowest pre-emption priority
|
||||
* - Lowest subpriority
|
||||
* - Lowest hardware priority (IRQ number)
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "misc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup MISC
|
||||
* @brief MISC driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup MISC_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Configures the priority grouping: pre-emption priority and subpriority.
|
||||
* @param NVIC_PriorityGroup: specifies the priority grouping bits length.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg NVIC_PriorityGroup_0: 0 bits for pre-emption priority
|
||||
* 4 bits for subpriority
|
||||
* @arg NVIC_PriorityGroup_1: 1 bits for pre-emption priority
|
||||
* 3 bits for subpriority
|
||||
* @arg NVIC_PriorityGroup_2: 2 bits for pre-emption priority
|
||||
* 2 bits for subpriority
|
||||
* @arg NVIC_PriorityGroup_3: 3 bits for pre-emption priority
|
||||
* 1 bits for subpriority
|
||||
* @arg NVIC_PriorityGroup_4: 4 bits for pre-emption priority
|
||||
* 0 bits for subpriority
|
||||
* @note When the NVIC_PriorityGroup_0 is selected, IRQ pre-emption is no more possible.
|
||||
* The pending IRQ priority will be managed only by the subpriority.
|
||||
* @retval None
|
||||
*/
|
||||
void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_PRIORITY_GROUP(NVIC_PriorityGroup));
|
||||
|
||||
/* Set the PRIGROUP[10:8] bits according to NVIC_PriorityGroup value */
|
||||
SCB->AIRCR = AIRCR_VECTKEY_MASK | NVIC_PriorityGroup;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the NVIC peripheral according to the specified
|
||||
* parameters in the NVIC_InitStruct.
|
||||
* @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
|
||||
* function should be called before.
|
||||
* @param NVIC_InitStruct: pointer to a NVIC_InitTypeDef structure that contains
|
||||
* the configuration information for the specified NVIC peripheral.
|
||||
* @retval None
|
||||
*/
|
||||
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct)
|
||||
{
|
||||
uint8_t tmppriority = 0x00, tmppre = 0x00, tmpsub = 0x0F;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NVIC_InitStruct->NVIC_IRQChannelCmd));
|
||||
assert_param(IS_NVIC_PREEMPTION_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority));
|
||||
assert_param(IS_NVIC_SUB_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelSubPriority));
|
||||
|
||||
if (NVIC_InitStruct->NVIC_IRQChannelCmd != DISABLE)
|
||||
{
|
||||
/* Compute the Corresponding IRQ Priority --------------------------------*/
|
||||
tmppriority = (0x700 - ((SCB->AIRCR) & (uint32_t)0x700))>> 0x08;
|
||||
tmppre = (0x4 - tmppriority);
|
||||
tmpsub = tmpsub >> tmppriority;
|
||||
|
||||
tmppriority = NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority << tmppre;
|
||||
tmppriority |= (uint8_t)(NVIC_InitStruct->NVIC_IRQChannelSubPriority & tmpsub);
|
||||
|
||||
tmppriority = tmppriority << 0x04;
|
||||
|
||||
NVIC->IP[NVIC_InitStruct->NVIC_IRQChannel] = tmppriority;
|
||||
|
||||
/* Enable the Selected IRQ Channels --------------------------------------*/
|
||||
NVIC->ISER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
|
||||
(uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the Selected IRQ Channels -------------------------------------*/
|
||||
NVIC->ICER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
|
||||
(uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets the vector table location and Offset.
|
||||
* @param NVIC_VectTab: specifies if the vector table is in RAM or FLASH memory.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg NVIC_VectTab_RAM: Vector Table in internal SRAM.
|
||||
* @arg NVIC_VectTab_FLASH: Vector Table in internal FLASH.
|
||||
* @param Offset: Vector Table base offset field. This value must be a multiple of 0x200.
|
||||
* @retval None
|
||||
*/
|
||||
void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));
|
||||
assert_param(IS_NVIC_OFFSET(Offset));
|
||||
|
||||
SCB->VTOR = NVIC_VectTab | (Offset & (uint32_t)0x1FFFFF80);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Selects the condition for the system to enter low power mode.
|
||||
* @param LowPowerMode: Specifies the new mode for the system to enter low power mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg NVIC_LP_SEVONPEND: Low Power SEV on Pend.
|
||||
* @arg NVIC_LP_SLEEPDEEP: Low Power DEEPSLEEP request.
|
||||
* @arg NVIC_LP_SLEEPONEXIT: Low Power Sleep on Exit.
|
||||
* @param NewState: new state of LP condition. This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_LP(LowPowerMode));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
SCB->SCR |= LowPowerMode;
|
||||
}
|
||||
else
|
||||
{
|
||||
SCB->SCR &= (uint32_t)(~(uint32_t)LowPowerMode);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configures the SysTick clock source.
|
||||
* @param SysTick_CLKSource: specifies the SysTick clock source.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8 selected as SysTick clock source.
|
||||
* @arg SysTick_CLKSource_HCLK: AHB clock selected as SysTick clock source.
|
||||
* @retval None
|
||||
*/
|
||||
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
|
||||
if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
|
||||
{
|
||||
SysTick->CTRL |= SysTick_CLKSource_HCLK;
|
||||
}
|
||||
else
|
||||
{
|
||||
SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
1742
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_adc.c
Executable file
1742
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_adc.c
Executable file
File diff suppressed because it is too large
Load Diff
1698
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_can.c
Executable file
1698
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_can.c
Executable file
File diff suppressed because it is too large
Load Diff
127
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_crc.c
Executable file
127
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_crc.c
Executable file
@@ -0,0 +1,127 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_crc.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides all the CRC firmware functions.
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_crc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRC
|
||||
* @brief CRC driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup CRC_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Resets the CRC Data register (DR).
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void CRC_ResetDR(void)
|
||||
{
|
||||
/* Reset CRC generator */
|
||||
CRC->CR = CRC_CR_RESET;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Computes the 32-bit CRC of a given data word(32-bit).
|
||||
* @param Data: data word(32-bit) to compute its CRC
|
||||
* @retval 32-bit CRC
|
||||
*/
|
||||
uint32_t CRC_CalcCRC(uint32_t Data)
|
||||
{
|
||||
CRC->DR = Data;
|
||||
|
||||
return (CRC->DR);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Computes the 32-bit CRC of a given buffer of data word(32-bit).
|
||||
* @param pBuffer: pointer to the buffer containing the data to be computed
|
||||
* @param BufferLength: length of the buffer to be computed
|
||||
* @retval 32-bit CRC
|
||||
*/
|
||||
uint32_t CRC_CalcBlockCRC(uint32_t pBuffer[], uint32_t BufferLength)
|
||||
{
|
||||
uint32_t index = 0;
|
||||
|
||||
for(index = 0; index < BufferLength; index++)
|
||||
{
|
||||
CRC->DR = pBuffer[index];
|
||||
}
|
||||
return (CRC->DR);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the current CRC value.
|
||||
* @param None
|
||||
* @retval 32-bit CRC
|
||||
*/
|
||||
uint32_t CRC_GetCRC(void)
|
||||
{
|
||||
return (CRC->DR);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Stores a 8-bit data in the Independent Data(ID) register.
|
||||
* @param IDValue: 8-bit value to be stored in the ID register
|
||||
* @retval None
|
||||
*/
|
||||
void CRC_SetIDRegister(uint8_t IDValue)
|
||||
{
|
||||
CRC->IDR = IDValue;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the 8-bit data stored in the Independent Data(ID) register
|
||||
* @param None
|
||||
* @retval 8-bit value of the ID register
|
||||
*/
|
||||
uint8_t CRC_GetIDRegister(void)
|
||||
{
|
||||
return (CRC->IDR);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
850
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp.c
Executable file
850
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp.c
Executable file
@@ -0,0 +1,850 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_cryp.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the Cryptographic processor (CRYP) peripheral:
|
||||
* - Initialization and Configuration functions
|
||||
* - Data treatment functions
|
||||
* - Context swapping functions
|
||||
* - DMA interface function
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable the CRYP controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
|
||||
*
|
||||
* 2. Initialise the CRYP using CRYP_Init(), CRYP_KeyInit() and if
|
||||
* needed CRYP_IVInit().
|
||||
*
|
||||
* 3. Flush the IN and OUT FIFOs by using CRYP_FIFOFlush() function.
|
||||
*
|
||||
* 4. Enable the CRYP controller using the CRYP_Cmd() function.
|
||||
*
|
||||
* 5. If using DMA for Data input and output transfer,
|
||||
* Activate the needed DMA Requests using CRYP_DMACmd() function
|
||||
|
||||
* 6. If DMA is not used for data transfer, use CRYP_DataIn() and
|
||||
* CRYP_DataOut() functions to enter data to IN FIFO and get result
|
||||
* from OUT FIFO.
|
||||
*
|
||||
* 7. To control CRYP events you can use one of the following
|
||||
* two methods:
|
||||
* - Check on CRYP flags using the CRYP_GetFlagStatus() function.
|
||||
* - Use CRYP interrupts through the function CRYP_ITConfig() at
|
||||
* initialization phase and CRYP_GetITStatus() function into
|
||||
* interrupt routines in processing phase.
|
||||
*
|
||||
* 8. Save and restore Cryptographic processor context using
|
||||
* CRYP_SaveContext() and CRYP_RestoreContext() functions.
|
||||
*
|
||||
*
|
||||
* ===================================================================
|
||||
* Procedure to perform an encryption or a decryption
|
||||
* ===================================================================
|
||||
*
|
||||
* Initialization
|
||||
* ===============
|
||||
* 1. Initialize the peripheral using CRYP_Init(), CRYP_KeyInit() and
|
||||
* CRYP_IVInit functions:
|
||||
* - Configure the key size (128-, 192- or 256-bit, in the AES only)
|
||||
* - Enter the symmetric key
|
||||
* - Configure the data type
|
||||
* - In case of decryption in AES-ECB or AES-CBC, you must prepare
|
||||
* the key: configure the key preparation mode. Then Enable the CRYP
|
||||
* peripheral using CRYP_Cmd() function: the BUSY flag is set.
|
||||
* Wait until BUSY flag is reset : the key is prepared for decryption
|
||||
* - Configure the algorithm and chaining (the DES/TDES in ECB/CBC, the
|
||||
* AES in ECB/CBC/CTR)
|
||||
* - Configure the direction (encryption/decryption).
|
||||
* - Write the initialization vectors (in CBC or CTR modes only)
|
||||
*
|
||||
* 2. Flush the IN and OUT FIFOs using the CRYP_FIFOFlush() function
|
||||
*
|
||||
*
|
||||
* Basic Processing mode (polling mode)
|
||||
* ====================================
|
||||
* 1. Enable the cryptographic processor using CRYP_Cmd() function.
|
||||
*
|
||||
* 2. Write the first blocks in the input FIFO (2 to 8 words) using
|
||||
* CRYP_DataIn() function.
|
||||
*
|
||||
* 3. Repeat the following sequence until the complete message has been
|
||||
* processed:
|
||||
*
|
||||
* a) Wait for flag CRYP_FLAG_OFNE occurs (using CRYP_GetFlagStatus()
|
||||
* function), then read the OUT-FIFO using CRYP_DataOut() function
|
||||
* (1 block or until the FIFO is empty)
|
||||
*
|
||||
* b) Wait for flag CRYP_FLAG_IFNF occurs, (using CRYP_GetFlagStatus()
|
||||
* function then write the IN FIFO using CRYP_DataIn() function
|
||||
* (1 block or until the FIFO is full)
|
||||
*
|
||||
* 4. At the end of the processing, CRYP_FLAG_BUSY flag will be reset and
|
||||
* both FIFOs are empty (CRYP_FLAG_IFEM is set and CRYP_FLAG_OFNE is
|
||||
* reset). You can disable the peripheral using CRYP_Cmd() function.
|
||||
*
|
||||
* Interrupts Processing mode
|
||||
* ===========================
|
||||
* In this mode, Processing is done when the data are transferred by the
|
||||
* CPU during interrupts.
|
||||
*
|
||||
* 1. Enable the interrupts CRYP_IT_INI and CRYP_IT_OUTI using
|
||||
* CRYP_ITConfig() function.
|
||||
*
|
||||
* 2. Enable the cryptographic processor using CRYP_Cmd() function.
|
||||
*
|
||||
* 3. In the CRYP_IT_INI interrupt handler : load the input message into the
|
||||
* IN FIFO using CRYP_DataIn() function . You can load 2 or 4 words at a
|
||||
* time, or load data until the IN FIFO is full. When the last word of
|
||||
* the message has been entered into the IN FIFO, disable the CRYP_IT_INI
|
||||
* interrupt (using CRYP_ITConfig() function).
|
||||
*
|
||||
* 4. In the CRYP_IT_OUTI interrupt handler : read the output message from
|
||||
* the OUT FIFO using CRYP_DataOut() function. You can read 1 block (2 or
|
||||
* 4 words) at a time or read data until the FIFO is empty.
|
||||
* When the last word has been read, INIM=0, BUSY=0 and both FIFOs are
|
||||
* empty (CRYP_FLAG_IFEM is set and CRYP_FLAG_OFNE is reset).
|
||||
* You can disable the CRYP_IT_OUTI interrupt (using CRYP_ITConfig()
|
||||
* function) and you can disable the peripheral using CRYP_Cmd() function.
|
||||
*
|
||||
* DMA Processing mode
|
||||
* ====================
|
||||
* In this mode, Processing is done when the DMA is used to transfer the
|
||||
* data from/to the memory.
|
||||
*
|
||||
* 1. Configure the DMA controller to transfer the input data from the
|
||||
* memory using DMA_Init() function.
|
||||
* The transfer length is the length of the message.
|
||||
* As message padding is not managed by the peripheral, the message
|
||||
* length must be an entire number of blocks. The data are transferred
|
||||
* in burst mode. The burst length is 4 words in the AES and 2 or 4
|
||||
* words in the DES/TDES. The DMA should be configured to set an
|
||||
* interrupt on transfer completion of the output data to indicate that
|
||||
* the processing is finished.
|
||||
* Refer to DMA peripheral driver for more details.
|
||||
*
|
||||
* 2. Enable the cryptographic processor using CRYP_Cmd() function.
|
||||
* Enable the DMA requests CRYP_DMAReq_DataIN and CRYP_DMAReq_DataOUT
|
||||
* using CRYP_DMACmd() function.
|
||||
*
|
||||
* 3. All the transfers and processing are managed by the DMA and the
|
||||
* cryptographic processor. The DMA transfer complete interrupt indicates
|
||||
* that the processing is complete. Both FIFOs are normally empty and
|
||||
* CRYP_FLAG_BUSY flag is reset.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_cryp.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP
|
||||
* @brief CRYP driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define FLAG_MASK ((uint8_t)0x20)
|
||||
#define MAX_TIMEOUT ((uint16_t)0xFFFF)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup CRYP_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group1 Initialization and Configuration functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Initialization and Configuration functions
|
||||
===============================================================================
|
||||
This section provides functions allowing to
|
||||
- Initialize the cryptographic Processor using CRYP_Init() function
|
||||
- Encrypt or Decrypt
|
||||
- mode : TDES-ECB, TDES-CBC,
|
||||
DES-ECB, DES-CBC,
|
||||
AES-ECB, AES-CBC, AES-CTR, AES-Key
|
||||
- DataType : 32-bit data, 16-bit data, bit data or bit-string
|
||||
- Key Size (only in AES modes)
|
||||
- Configure the Encrypt or Decrypt Key using CRYP_KeyInit() function
|
||||
- Configure the Initialization Vectors(IV) for CBC and CTR modes using
|
||||
CRYP_IVInit() function.
|
||||
- Flushes the IN and OUT FIFOs : using CRYP_FIFOFlush() function.
|
||||
- Enable or disable the CRYP Processor using CRYP_Cmd() function
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @brief Deinitializes the CRYP peripheral registers to their default reset values
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_DeInit(void)
|
||||
{
|
||||
/* Enable CRYP reset state */
|
||||
RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_CRYP, ENABLE);
|
||||
|
||||
/* Release CRYP from reset state */
|
||||
RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_CRYP, DISABLE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the CRYP peripheral according to the specified parameters
|
||||
* in the CRYP_InitStruct.
|
||||
* @param CRYP_InitStruct: pointer to a CRYP_InitTypeDef structure that contains
|
||||
* the configuration information for the CRYP peripheral.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_Init(CRYP_InitTypeDef* CRYP_InitStruct)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_CRYP_ALGOMODE(CRYP_InitStruct->CRYP_AlgoMode));
|
||||
assert_param(IS_CRYP_DATATYPE(CRYP_InitStruct->CRYP_DataType));
|
||||
assert_param(IS_CRYP_ALGODIR(CRYP_InitStruct->CRYP_AlgoDir));
|
||||
|
||||
/* Select Algorithm mode*/
|
||||
CRYP->CR &= ~CRYP_CR_ALGOMODE;
|
||||
CRYP->CR |= CRYP_InitStruct->CRYP_AlgoMode;
|
||||
|
||||
/* Select dataType */
|
||||
CRYP->CR &= ~CRYP_CR_DATATYPE;
|
||||
CRYP->CR |= CRYP_InitStruct->CRYP_DataType;
|
||||
|
||||
/* select Key size (used only with AES algorithm) */
|
||||
if ((CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_ECB) ||
|
||||
(CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_CBC) ||
|
||||
(CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_CTR) ||
|
||||
(CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_Key))
|
||||
{
|
||||
assert_param(IS_CRYP_KEYSIZE(CRYP_InitStruct->CRYP_KeySize));
|
||||
CRYP->CR &= ~CRYP_CR_KEYSIZE;
|
||||
CRYP->CR |= CRYP_InitStruct->CRYP_KeySize; /* Key size and value must be
|
||||
configured once the key has
|
||||
been prepared */
|
||||
}
|
||||
|
||||
/* Select data Direction */
|
||||
CRYP->CR &= ~CRYP_CR_ALGODIR;
|
||||
CRYP->CR |= CRYP_InitStruct->CRYP_AlgoDir;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each CRYP_InitStruct member with its default value.
|
||||
* @param CRYP_InitStruct: pointer to a CRYP_InitTypeDef structure which will
|
||||
* be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_StructInit(CRYP_InitTypeDef* CRYP_InitStruct)
|
||||
{
|
||||
/* Initialize the CRYP_AlgoDir member */
|
||||
CRYP_InitStruct->CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
|
||||
/* initialize the CRYP_AlgoMode member */
|
||||
CRYP_InitStruct->CRYP_AlgoMode = CRYP_AlgoMode_TDES_ECB;
|
||||
|
||||
/* initialize the CRYP_DataType member */
|
||||
CRYP_InitStruct->CRYP_DataType = CRYP_DataType_32b;
|
||||
|
||||
/* Initialize the CRYP_KeySize member */
|
||||
CRYP_InitStruct->CRYP_KeySize = CRYP_KeySize_128b;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the CRYP Keys according to the specified parameters in
|
||||
* the CRYP_KeyInitStruct.
|
||||
* @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure that
|
||||
* contains the configuration information for the CRYP Keys.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_KeyInit(CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
|
||||
{
|
||||
/* Key Initialisation */
|
||||
CRYP->K0LR = CRYP_KeyInitStruct->CRYP_Key0Left;
|
||||
CRYP->K0RR = CRYP_KeyInitStruct->CRYP_Key0Right;
|
||||
CRYP->K1LR = CRYP_KeyInitStruct->CRYP_Key1Left;
|
||||
CRYP->K1RR = CRYP_KeyInitStruct->CRYP_Key1Right;
|
||||
CRYP->K2LR = CRYP_KeyInitStruct->CRYP_Key2Left;
|
||||
CRYP->K2RR = CRYP_KeyInitStruct->CRYP_Key2Right;
|
||||
CRYP->K3LR = CRYP_KeyInitStruct->CRYP_Key3Left;
|
||||
CRYP->K3RR = CRYP_KeyInitStruct->CRYP_Key3Right;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each CRYP_KeyInitStruct member with its default value.
|
||||
* @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure
|
||||
* which will be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_KeyStructInit(CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
|
||||
{
|
||||
CRYP_KeyInitStruct->CRYP_Key0Left = 0;
|
||||
CRYP_KeyInitStruct->CRYP_Key0Right = 0;
|
||||
CRYP_KeyInitStruct->CRYP_Key1Left = 0;
|
||||
CRYP_KeyInitStruct->CRYP_Key1Right = 0;
|
||||
CRYP_KeyInitStruct->CRYP_Key2Left = 0;
|
||||
CRYP_KeyInitStruct->CRYP_Key2Right = 0;
|
||||
CRYP_KeyInitStruct->CRYP_Key3Left = 0;
|
||||
CRYP_KeyInitStruct->CRYP_Key3Right = 0;
|
||||
}
|
||||
/**
|
||||
* @brief Initializes the CRYP Initialization Vectors(IV) according to the
|
||||
* specified parameters in the CRYP_IVInitStruct.
|
||||
* @param CRYP_IVInitStruct: pointer to a CRYP_IVInitTypeDef structure that contains
|
||||
* the configuration information for the CRYP Initialization Vectors(IV).
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_IVInit(CRYP_IVInitTypeDef* CRYP_IVInitStruct)
|
||||
{
|
||||
CRYP->IV0LR = CRYP_IVInitStruct->CRYP_IV0Left;
|
||||
CRYP->IV0RR = CRYP_IVInitStruct->CRYP_IV0Right;
|
||||
CRYP->IV1LR = CRYP_IVInitStruct->CRYP_IV1Left;
|
||||
CRYP->IV1RR = CRYP_IVInitStruct->CRYP_IV1Right;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each CRYP_IVInitStruct member with its default value.
|
||||
* @param CRYP_IVInitStruct: pointer to a CRYP_IVInitTypeDef Initialization
|
||||
* Vectors(IV) structure which will be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_IVStructInit(CRYP_IVInitTypeDef* CRYP_IVInitStruct)
|
||||
{
|
||||
CRYP_IVInitStruct->CRYP_IV0Left = 0;
|
||||
CRYP_IVInitStruct->CRYP_IV0Right = 0;
|
||||
CRYP_IVInitStruct->CRYP_IV1Left = 0;
|
||||
CRYP_IVInitStruct->CRYP_IV1Right = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Flushes the IN and OUT FIFOs (that is read and write pointers of the
|
||||
* FIFOs are reset)
|
||||
* @note The FIFOs must be flushed only when BUSY flag is reset.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_FIFOFlush(void)
|
||||
{
|
||||
/* Reset the read and write pointers of the FIFOs */
|
||||
CRYP->CR |= CRYP_CR_FFLUSH;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the CRYP peripheral.
|
||||
* @param NewState: new state of the CRYP peripheral.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_Cmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the Cryptographic processor */
|
||||
CRYP->CR |= CRYP_CR_CRYPEN;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the Cryptographic processor */
|
||||
CRYP->CR &= ~CRYP_CR_CRYPEN;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group2 CRYP Data processing functions
|
||||
* @brief CRYP Data processing functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
CRYP Data processing functions
|
||||
===============================================================================
|
||||
This section provides functions allowing the encryption and decryption
|
||||
operations:
|
||||
- Enter data to be treated in the IN FIFO : using CRYP_DataIn() function.
|
||||
- Get the data result from the OUT FIFO : using CRYP_DataOut() function.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Writes data in the Data Input register (DIN).
|
||||
* @note After the DIN register has been read once or several times,
|
||||
* the FIFO must be flushed (using CRYP_FIFOFlush() function).
|
||||
* @param Data: data to write in Data Input register
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_DataIn(uint32_t Data)
|
||||
{
|
||||
CRYP->DR = Data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the last data entered into the output FIFO.
|
||||
* @param None
|
||||
* @retval Last data entered into the output FIFO.
|
||||
*/
|
||||
uint32_t CRYP_DataOut(void)
|
||||
{
|
||||
return CRYP->DOUT;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group3 Context swapping functions
|
||||
* @brief Context swapping functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Context swapping functions
|
||||
===============================================================================
|
||||
|
||||
This section provides functions allowing to save and store CRYP Context
|
||||
|
||||
It is possible to interrupt an encryption/ decryption/ key generation process
|
||||
to perform another processing with a higher priority, and to complete the
|
||||
interrupted process later on, when the higher-priority task is complete. To do
|
||||
so, the context of the interrupted task must be saved from the CRYP registers
|
||||
to memory, and then be restored from memory to the CRYP registers.
|
||||
|
||||
1. To save the current context, use CRYP_SaveContext() function
|
||||
2. To restore the saved context, use CRYP_RestoreContext() function
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Saves the CRYP peripheral Context.
|
||||
* @note This function stops DMA transfer before to save the context. After
|
||||
* restoring the context, you have to enable the DMA again (if the DMA
|
||||
* was previously used).
|
||||
* @param CRYP_ContextSave: pointer to a CRYP_Context structure that contains
|
||||
* the repository for current context.
|
||||
* @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure that
|
||||
* contains the configuration information for the CRYP Keys.
|
||||
* @retval None
|
||||
*/
|
||||
ErrorStatus CRYP_SaveContext(CRYP_Context* CRYP_ContextSave,
|
||||
CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
|
||||
{
|
||||
__IO uint32_t timeout = 0;
|
||||
uint32_t ckeckmask = 0, bitstatus;
|
||||
ErrorStatus status = ERROR;
|
||||
|
||||
/* Stop DMA transfers on the IN FIFO by clearing the DIEN bit in the CRYP_DMACR */
|
||||
CRYP->DMACR &= ~(uint32_t)CRYP_DMACR_DIEN;
|
||||
|
||||
/* Wait until both the IN and OUT FIFOs are empty
|
||||
(IFEM=1 and OFNE=0 in the CRYP_SR register) and the
|
||||
BUSY bit is cleared. */
|
||||
|
||||
if ((CRYP->CR & (uint32_t)(CRYP_CR_ALGOMODE_TDES_ECB | CRYP_CR_ALGOMODE_TDES_CBC)) != (uint32_t)0 )/* TDES */
|
||||
{
|
||||
ckeckmask = CRYP_SR_IFEM | CRYP_SR_BUSY ;
|
||||
}
|
||||
else /* AES or DES */
|
||||
{
|
||||
ckeckmask = CRYP_SR_IFEM | CRYP_SR_BUSY | CRYP_SR_OFNE;
|
||||
}
|
||||
|
||||
do
|
||||
{
|
||||
bitstatus = CRYP->SR & ckeckmask;
|
||||
timeout++;
|
||||
}
|
||||
while ((timeout != MAX_TIMEOUT) && (bitstatus != CRYP_SR_IFEM));
|
||||
|
||||
if ((CRYP->SR & ckeckmask) != CRYP_SR_IFEM)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Stop DMA transfers on the OUT FIFO by
|
||||
- writing the DOEN bit to 0 in the CRYP_DMACR register
|
||||
- and clear the CRYPEN bit. */
|
||||
|
||||
CRYP->DMACR &= ~(uint32_t)CRYP_DMACR_DOEN;
|
||||
CRYP->CR &= ~(uint32_t)CRYP_CR_CRYPEN;
|
||||
|
||||
/* Save the current configuration (bits [9:2] in the CRYP_CR register) */
|
||||
CRYP_ContextSave->CR_bits9to2 = CRYP->CR & (CRYP_CR_KEYSIZE |
|
||||
CRYP_CR_DATATYPE |
|
||||
CRYP_CR_ALGOMODE |
|
||||
CRYP_CR_ALGODIR);
|
||||
|
||||
/* and, if not in ECB mode, the initialization vectors. */
|
||||
CRYP_ContextSave->CRYP_IV0LR = CRYP->IV0LR;
|
||||
CRYP_ContextSave->CRYP_IV0RR = CRYP->IV0RR;
|
||||
CRYP_ContextSave->CRYP_IV1LR = CRYP->IV1LR;
|
||||
CRYP_ContextSave->CRYP_IV1RR = CRYP->IV1RR;
|
||||
|
||||
/* save The key value */
|
||||
CRYP_ContextSave->CRYP_K0LR = CRYP_KeyInitStruct->CRYP_Key0Left;
|
||||
CRYP_ContextSave->CRYP_K0RR = CRYP_KeyInitStruct->CRYP_Key0Right;
|
||||
CRYP_ContextSave->CRYP_K1LR = CRYP_KeyInitStruct->CRYP_Key1Left;
|
||||
CRYP_ContextSave->CRYP_K1RR = CRYP_KeyInitStruct->CRYP_Key1Right;
|
||||
CRYP_ContextSave->CRYP_K2LR = CRYP_KeyInitStruct->CRYP_Key2Left;
|
||||
CRYP_ContextSave->CRYP_K2RR = CRYP_KeyInitStruct->CRYP_Key2Right;
|
||||
CRYP_ContextSave->CRYP_K3LR = CRYP_KeyInitStruct->CRYP_Key3Left;
|
||||
CRYP_ContextSave->CRYP_K3RR = CRYP_KeyInitStruct->CRYP_Key3Right;
|
||||
|
||||
/* When needed, save the DMA status (pointers for IN and OUT messages,
|
||||
number of remaining bytes, etc.) */
|
||||
|
||||
status = SUCCESS;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Restores the CRYP peripheral Context.
|
||||
* @note Since teh DMA transfer is stopped in CRYP_SaveContext() function,
|
||||
* after restoring the context, you have to enable the DMA again (if the
|
||||
* DMA was previously used).
|
||||
* @param CRYP_ContextRestore: pointer to a CRYP_Context structure that contains
|
||||
* the repository for saved context.
|
||||
* @note The data that were saved during context saving must be rewrited into
|
||||
* the IN FIFO.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_RestoreContext(CRYP_Context* CRYP_ContextRestore)
|
||||
{
|
||||
|
||||
/* Configure the processor with the saved configuration */
|
||||
CRYP->CR = CRYP_ContextRestore->CR_bits9to2;
|
||||
|
||||
/* restore The key value */
|
||||
CRYP->K0LR = CRYP_ContextRestore->CRYP_K0LR;
|
||||
CRYP->K0RR = CRYP_ContextRestore->CRYP_K0RR;
|
||||
CRYP->K1LR = CRYP_ContextRestore->CRYP_K1LR;
|
||||
CRYP->K1RR = CRYP_ContextRestore->CRYP_K1RR;
|
||||
CRYP->K2LR = CRYP_ContextRestore->CRYP_K2LR;
|
||||
CRYP->K2RR = CRYP_ContextRestore->CRYP_K2RR;
|
||||
CRYP->K3LR = CRYP_ContextRestore->CRYP_K3LR;
|
||||
CRYP->K3RR = CRYP_ContextRestore->CRYP_K3RR;
|
||||
|
||||
/* and the initialization vectors. */
|
||||
CRYP->IV0LR = CRYP_ContextRestore->CRYP_IV0LR;
|
||||
CRYP->IV0RR = CRYP_ContextRestore->CRYP_IV0RR;
|
||||
CRYP->IV1LR = CRYP_ContextRestore->CRYP_IV1LR;
|
||||
CRYP->IV1RR = CRYP_ContextRestore->CRYP_IV1RR;
|
||||
|
||||
/* Enable the cryptographic processor */
|
||||
CRYP->CR |= CRYP_CR_CRYPEN;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group4 CRYP's DMA interface Configuration function
|
||||
* @brief CRYP's DMA interface Configuration function
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
CRYP's DMA interface Configuration function
|
||||
===============================================================================
|
||||
|
||||
This section provides functions allowing to configure the DMA interface for
|
||||
CRYP data input and output transfer.
|
||||
|
||||
When the DMA mode is enabled (using the CRYP_DMACmd() function), data can be
|
||||
transferred:
|
||||
- From memory to the CRYP IN FIFO using the DMA peripheral by enabling
|
||||
the CRYP_DMAReq_DataIN request.
|
||||
- From the CRYP OUT FIFO to the memory using the DMA peripheral by enabling
|
||||
the CRYP_DMAReq_DataOUT request.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the CRYP DMA interface.
|
||||
* @param CRYP_DMAReq: specifies the CRYP DMA transfer request to be enabled or disabled.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg CRYP_DMAReq_DataOUT: DMA for outgoing(Tx) data transfer
|
||||
* @arg CRYP_DMAReq_DataIN: DMA for incoming(Rx) data transfer
|
||||
* @param NewState: new state of the selected CRYP DMA transfer request.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_DMACmd(uint8_t CRYP_DMAReq, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_CRYP_DMAREQ(CRYP_DMAReq));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected CRYP DMA request */
|
||||
CRYP->DMACR |= CRYP_DMAReq;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected CRYP DMA request */
|
||||
CRYP->DMACR &= (uint8_t)~CRYP_DMAReq;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group5 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
This section provides functions allowing to configure the CRYP Interrupts and
|
||||
to get the status and Interrupts pending bits.
|
||||
|
||||
The CRYP provides 2 Interrupts sources and 7 Flags:
|
||||
|
||||
Flags :
|
||||
-------
|
||||
|
||||
1. CRYP_FLAG_IFEM : Set when Input FIFO is empty.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
2. CRYP_FLAG_IFNF : Set when Input FIFO is not full.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
|
||||
3. CRYP_FLAG_INRIS : Set when Input FIFO Raw interrupt is pending
|
||||
it gives the raw interrupt state prior to masking
|
||||
of the input FIFO service interrupt.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
4. CRYP_FLAG_OFNE : Set when Output FIFO not empty.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
5. CRYP_FLAG_OFFU : Set when Output FIFO is full.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
6. CRYP_FLAG_OUTRIS : Set when Output FIFO Raw interrupt is pending
|
||||
it gives the raw interrupt state prior to masking
|
||||
of the output FIFO service interrupt.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
7. CRYP_FLAG_BUSY : Set when the CRYP core is currently processing a
|
||||
block of data or a key preparation (for AES
|
||||
decryption).
|
||||
This Flag is cleared only by hardware.
|
||||
To clear it, the CRYP core must be disabled and the
|
||||
last processing has completed.
|
||||
|
||||
Interrupts :
|
||||
------------
|
||||
|
||||
1. CRYP_IT_INI : The input FIFO service interrupt is asserted when there
|
||||
are less than 4 words in the input FIFO.
|
||||
This interrupt is associated to CRYP_FLAG_INRIS flag.
|
||||
|
||||
@note This interrupt is cleared by performing write operations
|
||||
to the input FIFO until it holds 4 or more words. The
|
||||
input FIFO service interrupt INMIS is enabled with the
|
||||
CRYP enable bit. Consequently, when CRYP is disabled, the
|
||||
INMIS signal is low even if the input FIFO is empty.
|
||||
|
||||
|
||||
|
||||
2. CRYP_IT_OUTI : The output FIFO service interrupt is asserted when there
|
||||
is one or more (32-bit word) data items in the output FIFO.
|
||||
This interrupt is associated to CRYP_FLAG_OUTRIS flag.
|
||||
|
||||
@note This interrupt is cleared by reading data from the output
|
||||
FIFO until there is no valid (32-bit) word left (that is,
|
||||
the interrupt follows the state of the OFNE (output FIFO
|
||||
not empty) flag).
|
||||
|
||||
|
||||
Managing the CRYP controller events :
|
||||
------------------------------------
|
||||
The user should identify which mode will be used in his application to manage
|
||||
the CRYP controller events: Polling mode or Interrupt mode.
|
||||
|
||||
1. In the Polling Mode it is advised to use the following functions:
|
||||
- CRYP_GetFlagStatus() : to check if flags events occur.
|
||||
|
||||
@note The CRYPT flags do not need to be cleared since they are cleared as
|
||||
soon as the associated event are reset.
|
||||
|
||||
|
||||
2. In the Interrupt Mode it is advised to use the following functions:
|
||||
- CRYP_ITConfig() : to enable or disable the interrupt source.
|
||||
- CRYP_GetITStatus() : to check if Interrupt occurs.
|
||||
|
||||
@note The CRYPT interrupts have no pending bits, the interrupt is cleared as
|
||||
soon as the associated event is reset.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified CRYP interrupts.
|
||||
* @param CRYP_IT: specifies the CRYP interrupt source to be enabled or disabled.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg CRYP_IT_INI: Input FIFO interrupt
|
||||
* @arg CRYP_IT_OUTI: Output FIFO interrupt
|
||||
* @param NewState: new state of the specified CRYP interrupt.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void CRYP_ITConfig(uint8_t CRYP_IT, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_CRYP_CONFIG_IT(CRYP_IT));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected CRYP interrupt */
|
||||
CRYP->IMSCR |= CRYP_IT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected CRYP interrupt */
|
||||
CRYP->IMSCR &= (uint8_t)~CRYP_IT;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified CRYP interrupt has occurred or not.
|
||||
* @note This function checks the status of the masked interrupt (i.e the
|
||||
* interrupt should be previously enabled).
|
||||
* @param CRYP_IT: specifies the CRYP (masked) interrupt source to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg CRYP_IT_INI: Input FIFO interrupt
|
||||
* @arg CRYP_IT_OUTI: Output FIFO interrupt
|
||||
* @retval The new state of CRYP_IT (SET or RESET).
|
||||
*/
|
||||
ITStatus CRYP_GetITStatus(uint8_t CRYP_IT)
|
||||
{
|
||||
ITStatus bitstatus = RESET;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_CRYP_GET_IT(CRYP_IT));
|
||||
|
||||
/* Check the status of the specified CRYP interrupt */
|
||||
if ((CRYP->MISR & CRYP_IT) != (uint8_t)RESET)
|
||||
{
|
||||
/* CRYP_IT is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* CRYP_IT is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the CRYP_IT status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified CRYP flag is set or not.
|
||||
* @param CRYP_FLAG: specifies the CRYP flag to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg CRYP_FLAG_IFEM: Input FIFO Empty flag.
|
||||
* @arg CRYP_FLAG_IFNF: Input FIFO Not Full flag.
|
||||
* @arg CRYP_FLAG_OFNE: Output FIFO Not Empty flag.
|
||||
* @arg CRYP_FLAG_OFFU: Output FIFO Full flag.
|
||||
* @arg CRYP_FLAG_BUSY: Busy flag.
|
||||
* @arg CRYP_FLAG_OUTRIS: Output FIFO raw interrupt flag.
|
||||
* @arg CRYP_FLAG_INRIS: Input FIFO raw interrupt flag.
|
||||
* @retval The new state of CRYP_FLAG (SET or RESET).
|
||||
*/
|
||||
FlagStatus CRYP_GetFlagStatus(uint8_t CRYP_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
uint32_t tempreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_CRYP_GET_FLAG(CRYP_FLAG));
|
||||
|
||||
/* check if the FLAG is in RISR register */
|
||||
if ((CRYP_FLAG & FLAG_MASK) != 0x00)
|
||||
{
|
||||
tempreg = CRYP->RISR;
|
||||
}
|
||||
else /* The FLAG is in SR register */
|
||||
{
|
||||
tempreg = CRYP->SR;
|
||||
}
|
||||
|
||||
|
||||
/* Check the status of the specified CRYP flag */
|
||||
if ((tempreg & CRYP_FLAG ) != (uint8_t)RESET)
|
||||
{
|
||||
/* CRYP_FLAG is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* CRYP_FLAG is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
|
||||
/* Return the CRYP_FLAG status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
638
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp_aes.c
Executable file
638
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp_aes.c
Executable file
@@ -0,0 +1,638 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_cryp_aes.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides high level functions to encrypt and decrypt an
|
||||
* input message using AES in ECB/CBC/CTR modes.
|
||||
* It uses the stm32f4xx_cryp.c/.h drivers to access the STM32F4xx CRYP
|
||||
* peripheral.
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable The CRYP controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
|
||||
*
|
||||
* 2. Encrypt and decrypt using AES in ECB Mode using CRYP_AES_ECB()
|
||||
* function.
|
||||
*
|
||||
* 3. Encrypt and decrypt using AES in CBC Mode using CRYP_AES_CBC()
|
||||
* function.
|
||||
*
|
||||
* 4. Encrypt and decrypt using AES in CTR Mode using CRYP_AES_CTR()
|
||||
* function.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_cryp.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP
|
||||
* @brief CRYP driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define AESBUSY_TIMEOUT ((uint32_t) 0x00010000)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup CRYP_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group6 High Level AES functions
|
||||
* @brief High Level AES functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
High Level AES functions
|
||||
===============================================================================
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Encrypt and decrypt using AES in ECB Mode
|
||||
* @param Mode: encryption or decryption Mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg MODE_ENCRYPT: Encryption
|
||||
* @arg MODE_DECRYPT: Decryption
|
||||
* @param Key: Key used for AES algorithm.
|
||||
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
||||
* @param Input: pointer to the Input buffer.
|
||||
* @param Ilength: length of the Input buffer, must be a multiple of 16.
|
||||
* @param Output: pointer to the returned buffer.
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: Operation done
|
||||
* - ERROR: Operation failed
|
||||
*/
|
||||
ErrorStatus CRYP_AES_ECB(uint8_t Mode, uint8_t* Key, uint16_t Keysize,
|
||||
uint8_t* Input, uint32_t Ilength, uint8_t* Output)
|
||||
{
|
||||
CRYP_InitTypeDef AES_CRYP_InitStructure;
|
||||
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
uint32_t i = 0;
|
||||
|
||||
/* Crypto structures initialisation*/
|
||||
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
switch(Keysize)
|
||||
{
|
||||
case 128:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
case 192:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
case 256:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
/*------------------ AES Decryption ------------------*/
|
||||
if(Mode == MODE_DECRYPT) /* AES decryption */
|
||||
{
|
||||
/* Flush IN/OUT FIFOs */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Crypto Init for Key preparation for decryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key;
|
||||
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b;
|
||||
CRYP_Init(&AES_CRYP_InitStructure);
|
||||
|
||||
/* Key Initialisation */
|
||||
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Crypto Init for decryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
}
|
||||
}
|
||||
/*------------------ AES Encryption ------------------*/
|
||||
else /* AES encryption */
|
||||
{
|
||||
|
||||
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Crypto Init for Encryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
}
|
||||
|
||||
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB;
|
||||
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
|
||||
CRYP_Init(&AES_CRYP_InitStructure);
|
||||
|
||||
/* Flush IN/OUT FIFOs */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16)
|
||||
{
|
||||
|
||||
/* Write the Input block in the IN FIFO */
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
|
||||
/* Wait until the complete message has been processed */
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* Read the Output block from the Output FIFO */
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable Crypto */
|
||||
CRYP_Cmd(DISABLE);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Encrypt and decrypt using AES in CBC Mode
|
||||
* @param Mode: encryption or decryption Mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg MODE_ENCRYPT: Encryption
|
||||
* @arg MODE_DECRYPT: Decryption
|
||||
* @param InitVectors: Initialisation Vectors used for AES algorithm.
|
||||
* @param Key: Key used for AES algorithm.
|
||||
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
||||
* @param Input: pointer to the Input buffer.
|
||||
* @param Ilength: length of the Input buffer, must be a multiple of 16.
|
||||
* @param Output: pointer to the returned buffer.
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: Operation done
|
||||
* - ERROR: Operation failed
|
||||
*/
|
||||
ErrorStatus CRYP_AES_CBC(uint8_t Mode, uint8_t InitVectors[16], uint8_t *Key,
|
||||
uint16_t Keysize, uint8_t *Input, uint32_t Ilength,
|
||||
uint8_t *Output)
|
||||
{
|
||||
CRYP_InitTypeDef AES_CRYP_InitStructure;
|
||||
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
|
||||
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
uint32_t ivaddr = (uint32_t)InitVectors;
|
||||
uint32_t i = 0;
|
||||
|
||||
/* Crypto structures initialisation*/
|
||||
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
switch(Keysize)
|
||||
{
|
||||
case 128:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
case 192:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
case 256:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
/* CRYP Initialization Vectors */
|
||||
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr));
|
||||
|
||||
|
||||
/*------------------ AES Decryption ------------------*/
|
||||
if(Mode == MODE_DECRYPT) /* AES decryption */
|
||||
{
|
||||
/* Flush IN/OUT FIFOs */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Crypto Init for Key preparation for decryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key;
|
||||
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b;
|
||||
|
||||
CRYP_Init(&AES_CRYP_InitStructure);
|
||||
|
||||
/* Key Initialisation */
|
||||
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Crypto Init for decryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
}
|
||||
}
|
||||
/*------------------ AES Encryption ------------------*/
|
||||
else /* AES encryption */
|
||||
{
|
||||
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Crypto Init for Encryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
}
|
||||
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC;
|
||||
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
|
||||
CRYP_Init(&AES_CRYP_InitStructure);
|
||||
|
||||
/* CRYP Initialization Vectors */
|
||||
CRYP_IVInit(&AES_CRYP_IVInitStructure);
|
||||
|
||||
/* Flush IN/OUT FIFOs */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
|
||||
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16)
|
||||
{
|
||||
|
||||
/* Write the Input block in the IN FIFO */
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
/* Wait until the complete message has been processed */
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* Read the Output block from the Output FIFO */
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable Crypto */
|
||||
CRYP_Cmd(DISABLE);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Encrypt and decrypt using AES in CTR Mode
|
||||
* @param Mode: encryption or decryption Mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg MODE_ENCRYPT: Encryption
|
||||
* @arg MODE_DECRYPT: Decryption
|
||||
* @param InitVectors: Initialisation Vectors used for AES algorithm.
|
||||
* @param Key: Key used for AES algorithm.
|
||||
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
||||
* @param Input: pointer to the Input buffer.
|
||||
* @param Ilength: length of the Input buffer, must be a multiple of 16.
|
||||
* @param Output: pointer to the returned buffer.
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: Operation done
|
||||
* - ERROR: Operation failed
|
||||
*/
|
||||
ErrorStatus CRYP_AES_CTR(uint8_t Mode, uint8_t InitVectors[16], uint8_t *Key,
|
||||
uint16_t Keysize, uint8_t *Input, uint32_t Ilength,
|
||||
uint8_t *Output)
|
||||
{
|
||||
CRYP_InitTypeDef AES_CRYP_InitStructure;
|
||||
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
|
||||
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
uint32_t ivaddr = (uint32_t)InitVectors;
|
||||
uint32_t i = 0;
|
||||
|
||||
/* Crypto structures initialisation*/
|
||||
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
switch(Keysize)
|
||||
{
|
||||
case 128:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
case 192:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
case 256:
|
||||
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
/* CRYP Initialization Vectors */
|
||||
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr));
|
||||
|
||||
/* Key Initialisation */
|
||||
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
|
||||
|
||||
/*------------------ AES Decryption ------------------*/
|
||||
if(Mode == MODE_DECRYPT) /* AES decryption */
|
||||
{
|
||||
/* Crypto Init for decryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
}
|
||||
/*------------------ AES Encryption ------------------*/
|
||||
else /* AES encryption */
|
||||
{
|
||||
/* Crypto Init for Encryption process */
|
||||
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
}
|
||||
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CTR;
|
||||
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
|
||||
CRYP_Init(&AES_CRYP_InitStructure);
|
||||
|
||||
/* CRYP Initialization Vectors */
|
||||
CRYP_IVInit(&AES_CRYP_IVInitStructure);
|
||||
|
||||
/* Flush IN/OUT FIFOs */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16)
|
||||
{
|
||||
|
||||
/* Write the Input block in the IN FIFO */
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
/* Wait until the complete message has been processed */
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* Read the Output block from the Output FIFO */
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
}
|
||||
}
|
||||
/* Disable Crypto */
|
||||
CRYP_Cmd(DISABLE);
|
||||
|
||||
return status;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
||||
|
291
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp_des.c
Executable file
291
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp_des.c
Executable file
@@ -0,0 +1,291 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_cryp_des.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides high level functions to encrypt and decrypt an
|
||||
* input message using DES in ECB/CBC modes.
|
||||
* It uses the stm32f4xx_cryp.c/.h drivers to access the STM32F4xx CRYP
|
||||
* peripheral.
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable The CRYP controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
|
||||
*
|
||||
* 2. Encrypt and decrypt using DES in ECB Mode using CRYP_DES_ECB()
|
||||
* function.
|
||||
*
|
||||
* 3. Encrypt and decrypt using DES in CBC Mode using CRYP_DES_CBC()
|
||||
* function.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_cryp.h"
|
||||
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP
|
||||
* @brief CRYP driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define DESBUSY_TIMEOUT ((uint32_t) 0x00010000)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
|
||||
/** @defgroup CRYP_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group8 High Level DES functions
|
||||
* @brief High Level DES functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
High Level DES functions
|
||||
===============================================================================
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Encrypt and decrypt using DES in ECB Mode
|
||||
* @param Mode: encryption or decryption Mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg MODE_ENCRYPT: Encryption
|
||||
* @arg MODE_DECRYPT: Decryption
|
||||
* @param Key: Key used for DES algorithm.
|
||||
* @param Ilength: length of the Input buffer, must be a multiple of 8.
|
||||
* @param Input: pointer to the Input buffer.
|
||||
* @param Output: pointer to the returned buffer.
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: Operation done
|
||||
* - ERROR: Operation failed
|
||||
*/
|
||||
ErrorStatus CRYP_DES_ECB(uint8_t Mode, uint8_t Key[8], uint8_t *Input,
|
||||
uint32_t Ilength, uint8_t *Output)
|
||||
{
|
||||
CRYP_InitTypeDef DES_CRYP_InitStructure;
|
||||
CRYP_KeyInitTypeDef DES_CRYP_KeyInitStructure;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
uint32_t i = 0;
|
||||
|
||||
/* Crypto structures initialisation*/
|
||||
CRYP_KeyStructInit(&DES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Crypto Init for Encryption process */
|
||||
if( Mode == MODE_ENCRYPT ) /* DES encryption */
|
||||
{
|
||||
DES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
}
|
||||
else/* if( Mode == MODE_DECRYPT )*/ /* DES decryption */
|
||||
{
|
||||
DES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
}
|
||||
|
||||
DES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_DES_ECB;
|
||||
DES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
|
||||
CRYP_Init(&DES_CRYP_InitStructure);
|
||||
|
||||
/* Key Initialisation */
|
||||
DES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
DES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
CRYP_KeyInit(& DES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Flush IN/OUT FIFO */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
for(i=0; ((i<Ilength) && (status != ERROR)); i+=8)
|
||||
{
|
||||
|
||||
/* Write the Input block in the Input FIFO */
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
|
||||
/* Wait until the complete message has been processed */
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != DESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* Read the Output block from the Output FIFO */
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable Crypto */
|
||||
CRYP_Cmd(DISABLE);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Encrypt and decrypt using DES in CBC Mode
|
||||
* @param Mode: encryption or decryption Mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg MODE_ENCRYPT: Encryption
|
||||
* @arg MODE_DECRYPT: Decryption
|
||||
* @param Key: Key used for DES algorithm.
|
||||
* @param InitVectors: Initialisation Vectors used for DES algorithm.
|
||||
* @param Ilength: length of the Input buffer, must be a multiple of 8.
|
||||
* @param Input: pointer to the Input buffer.
|
||||
* @param Output: pointer to the returned buffer.
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: Operation done
|
||||
* - ERROR: Operation failed
|
||||
*/
|
||||
ErrorStatus CRYP_DES_CBC(uint8_t Mode, uint8_t Key[8], uint8_t InitVectors[8],
|
||||
uint8_t *Input, uint32_t Ilength, uint8_t *Output)
|
||||
{
|
||||
CRYP_InitTypeDef DES_CRYP_InitStructure;
|
||||
CRYP_KeyInitTypeDef DES_CRYP_KeyInitStructure;
|
||||
CRYP_IVInitTypeDef DES_CRYP_IVInitStructure;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
uint32_t ivaddr = (uint32_t)InitVectors;
|
||||
uint32_t i = 0;
|
||||
|
||||
/* Crypto structures initialisation*/
|
||||
CRYP_KeyStructInit(&DES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Crypto Init for Encryption process */
|
||||
if(Mode == MODE_ENCRYPT) /* DES encryption */
|
||||
{
|
||||
DES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
}
|
||||
else /*if(Mode == MODE_DECRYPT)*/ /* DES decryption */
|
||||
{
|
||||
DES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
}
|
||||
|
||||
DES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_DES_CBC;
|
||||
DES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
|
||||
CRYP_Init(&DES_CRYP_InitStructure);
|
||||
|
||||
/* Key Initialisation */
|
||||
DES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
DES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
CRYP_KeyInit(& DES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Initialization Vectors */
|
||||
DES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
DES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr));
|
||||
CRYP_IVInit(&DES_CRYP_IVInitStructure);
|
||||
|
||||
/* Flush IN/OUT FIFO */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
for(i=0; ((i<Ilength) && (status != ERROR)); i+=8)
|
||||
{
|
||||
/* Write the Input block in the Input FIFO */
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
|
||||
/* Wait until the complete message has been processed */
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != DESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Read the Output block from the Output FIFO */
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable Crypto */
|
||||
CRYP_Cmd(DISABLE);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
308
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp_tdes.c
Executable file
308
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_cryp_tdes.c
Executable file
@@ -0,0 +1,308 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_cryp_tdes.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides high level functions to encrypt and decrypt an
|
||||
* input message using TDES in ECB/CBC modes .
|
||||
* It uses the stm32f4xx_cryp.c/.h drivers to access the STM32F4xx CRYP
|
||||
* peripheral.
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable The CRYP controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
|
||||
*
|
||||
* 2. Encrypt and decrypt using TDES in ECB Mode using CRYP_TDES_ECB()
|
||||
* function.
|
||||
*
|
||||
* 3. Encrypt and decrypt using TDES in CBC Mode using CRYP_TDES_CBC()
|
||||
* function.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_cryp.h"
|
||||
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP
|
||||
* @brief CRYP driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define TDESBUSY_TIMEOUT ((uint32_t) 0x00010000)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
|
||||
/** @defgroup CRYP_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CRYP_Group7 High Level TDES functions
|
||||
* @brief High Level TDES functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
High Level TDES functions
|
||||
===============================================================================
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Encrypt and decrypt using TDES in ECB Mode
|
||||
* @param Mode: encryption or decryption Mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg MODE_ENCRYPT: Encryption
|
||||
* @arg MODE_DECRYPT: Decryption
|
||||
* @param Key: Key used for TDES algorithm.
|
||||
* @param Ilength: length of the Input buffer, must be a multiple of 8.
|
||||
* @param Input: pointer to the Input buffer.
|
||||
* @param Output: pointer to the returned buffer.
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: Operation done
|
||||
* - ERROR: Operation failed
|
||||
*/
|
||||
ErrorStatus CRYP_TDES_ECB(uint8_t Mode, uint8_t Key[24], uint8_t *Input,
|
||||
uint32_t Ilength, uint8_t *Output)
|
||||
{
|
||||
CRYP_InitTypeDef TDES_CRYP_InitStructure;
|
||||
CRYP_KeyInitTypeDef TDES_CRYP_KeyInitStructure;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
uint32_t i = 0;
|
||||
|
||||
/* Crypto structures initialisation*/
|
||||
CRYP_KeyStructInit(&TDES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Crypto Init for Encryption process */
|
||||
if(Mode == MODE_ENCRYPT) /* TDES encryption */
|
||||
{
|
||||
TDES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
}
|
||||
else /*if(Mode == MODE_DECRYPT)*/ /* TDES decryption */
|
||||
{
|
||||
TDES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
}
|
||||
|
||||
TDES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_TDES_ECB;
|
||||
TDES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
|
||||
CRYP_Init(&TDES_CRYP_InitStructure);
|
||||
|
||||
/* Key Initialisation */
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
CRYP_KeyInit(& TDES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Flush IN/OUT FIFO */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
for(i=0; ((i<Ilength) && (status != ERROR)); i+=8)
|
||||
{
|
||||
/* Write the Input block in the Input FIFO */
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
|
||||
/* Wait until the complete message has been processed */
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != TDESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* Read the Output block from the Output FIFO */
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable Crypto */
|
||||
CRYP_Cmd(DISABLE);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Encrypt and decrypt using TDES in CBC Mode
|
||||
* @param Mode: encryption or decryption Mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg MODE_ENCRYPT: Encryption
|
||||
* @arg MODE_DECRYPT: Decryption
|
||||
* @param Key: Key used for TDES algorithm.
|
||||
* @param InitVectors: Initialisation Vectors used for TDES algorithm.
|
||||
* @param Input: pointer to the Input buffer.
|
||||
* @param Ilength: length of the Input buffer, must be a multiple of 8.
|
||||
* @param Output: pointer to the returned buffer.
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: Operation done
|
||||
* - ERROR: Operation failed
|
||||
*/
|
||||
ErrorStatus CRYP_TDES_CBC(uint8_t Mode, uint8_t Key[24], uint8_t InitVectors[8],
|
||||
uint8_t *Input, uint32_t Ilength, uint8_t *Output)
|
||||
{
|
||||
CRYP_InitTypeDef TDES_CRYP_InitStructure;
|
||||
CRYP_KeyInitTypeDef TDES_CRYP_KeyInitStructure;
|
||||
CRYP_IVInitTypeDef TDES_CRYP_IVInitStructure;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
uint32_t ivaddr = (uint32_t)InitVectors;
|
||||
uint32_t i = 0;
|
||||
|
||||
/* Crypto structures initialisation*/
|
||||
CRYP_KeyStructInit(&TDES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Crypto Init for Encryption process */
|
||||
if(Mode == MODE_ENCRYPT) /* TDES encryption */
|
||||
{
|
||||
TDES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
|
||||
}
|
||||
else
|
||||
{
|
||||
TDES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
|
||||
}
|
||||
TDES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_TDES_CBC;
|
||||
TDES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
|
||||
|
||||
CRYP_Init(&TDES_CRYP_InitStructure);
|
||||
|
||||
/* Key Initialisation */
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
|
||||
keyaddr+=4;
|
||||
TDES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
|
||||
CRYP_KeyInit(& TDES_CRYP_KeyInitStructure);
|
||||
|
||||
/* Initialization Vectors */
|
||||
TDES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr));
|
||||
ivaddr+=4;
|
||||
TDES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr));
|
||||
CRYP_IVInit(&TDES_CRYP_IVInitStructure);
|
||||
|
||||
/* Flush IN/OUT FIFO */
|
||||
CRYP_FIFOFlush();
|
||||
|
||||
/* Enable Crypto processor */
|
||||
CRYP_Cmd(ENABLE);
|
||||
|
||||
for(i=0; ((i<Ilength) && (status != ERROR)); i+=8)
|
||||
{
|
||||
/* Write the Input block in the Input FIFO */
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
CRYP_DataIn(*(uint32_t*)(inputaddr));
|
||||
inputaddr+=4;
|
||||
|
||||
/* Wait until the complete message has been processed */
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != TDESBUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* Read the Output block from the Output FIFO */
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = CRYP_DataOut();
|
||||
outputaddr+=4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable Crypto */
|
||||
CRYP_Cmd(DISABLE);
|
||||
|
||||
return status;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
701
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dac.c
Executable file
701
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dac.c
Executable file
@@ -0,0 +1,701 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_dac.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the Digital-to-Analog Converter (DAC) peripheral:
|
||||
* - DAC channels configuration: trigger, output buffer, data format
|
||||
* - DMA management
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* DAC Peripheral features
|
||||
* ===================================================================
|
||||
*
|
||||
* DAC Channels
|
||||
* =============
|
||||
* The device integrates two 12-bit Digital Analog Converters that can
|
||||
* be used independently or simultaneously (dual mode):
|
||||
* 1- DAC channel1 with DAC_OUT1 (PA4) as output
|
||||
* 1- DAC channel2 with DAC_OUT2 (PA5) as output
|
||||
*
|
||||
* DAC Triggers
|
||||
* =============
|
||||
* Digital to Analog conversion can be non-triggered using DAC_Trigger_None
|
||||
* and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register
|
||||
* using DAC_SetChannel1Data() / DAC_SetChannel2Data() functions.
|
||||
*
|
||||
* Digital to Analog conversion can be triggered by:
|
||||
* 1- External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_Trigger_Ext_IT9.
|
||||
* The used pin (GPIOx_Pin9) must be configured in input mode.
|
||||
*
|
||||
* 2- Timers TRGO: TIM2, TIM4, TIM5, TIM6, TIM7 and TIM8
|
||||
* (DAC_Trigger_T2_TRGO, DAC_Trigger_T4_TRGO...)
|
||||
* The timer TRGO event should be selected using TIM_SelectOutputTrigger()
|
||||
*
|
||||
* 3- Software using DAC_Trigger_Software
|
||||
*
|
||||
* DAC Buffer mode feature
|
||||
* ========================
|
||||
* Each DAC channel integrates an output buffer that can be used to
|
||||
* reduce the output impedance, and to drive external loads directly
|
||||
* without having to add an external operational amplifier.
|
||||
* To enable, the output buffer use
|
||||
* DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
|
||||
*
|
||||
* Refer to the device datasheet for more details about output
|
||||
* impedance value with and without output buffer.
|
||||
*
|
||||
* DAC wave generation feature
|
||||
* =============================
|
||||
* Both DAC channels can be used to generate
|
||||
* 1- Noise wave using DAC_WaveGeneration_Noise
|
||||
* 2- Triangle wave using DAC_WaveGeneration_Triangle
|
||||
*
|
||||
* Wave generation can be disabled using DAC_WaveGeneration_None
|
||||
*
|
||||
* DAC data format
|
||||
* ================
|
||||
* The DAC data format can be:
|
||||
* 1- 8-bit right alignment using DAC_Align_8b_R
|
||||
* 2- 12-bit left alignment using DAC_Align_12b_L
|
||||
* 3- 12-bit right alignment using DAC_Align_12b_R
|
||||
*
|
||||
* DAC data value to voltage correspondence
|
||||
* ========================================
|
||||
* The analog output voltage on each DAC channel pin is determined
|
||||
* by the following equation:
|
||||
* DAC_OUTx = VREF+ * DOR / 4095
|
||||
* with DOR is the Data Output Register
|
||||
* VEF+ is the input voltage reference (refer to the device datasheet)
|
||||
* e.g. To set DAC_OUT1 to 0.7V, use
|
||||
* DAC_SetChannel1Data(DAC_Align_12b_R, 868);
|
||||
* Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V
|
||||
*
|
||||
* DMA requests
|
||||
* =============
|
||||
* A DMA1 request can be generated when an external trigger (but not
|
||||
* a software trigger) occurs if DMA1 requests are enabled using
|
||||
* DAC_DMACmd()
|
||||
* DMA1 requests are mapped as following:
|
||||
* 1- DAC channel1 : mapped on DMA1 Stream5 channel7 which must be
|
||||
* already configured
|
||||
* 2- DAC channel2 : mapped on DMA1 Stream6 channel7 which must be
|
||||
* already configured
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* - DAC APB clock must be enabled to get write access to DAC
|
||||
* registers using
|
||||
* RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE)
|
||||
* - Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode.
|
||||
* - Configure the DAC channel using DAC_Init() function
|
||||
* - Enable the DAC channel using DAC_Cmd() function
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_dac.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup DAC
|
||||
* @brief DAC driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
|
||||
/* CR register Mask */
|
||||
#define CR_CLEAR_MASK ((uint32_t)0x00000FFE)
|
||||
|
||||
/* DAC Dual Channels SWTRIG masks */
|
||||
#define DUAL_SWTRIG_SET ((uint32_t)0x00000003)
|
||||
#define DUAL_SWTRIG_RESET ((uint32_t)0xFFFFFFFC)
|
||||
|
||||
/* DHR registers offsets */
|
||||
#define DHR12R1_OFFSET ((uint32_t)0x00000008)
|
||||
#define DHR12R2_OFFSET ((uint32_t)0x00000014)
|
||||
#define DHR12RD_OFFSET ((uint32_t)0x00000020)
|
||||
|
||||
/* DOR register offset */
|
||||
#define DOR_OFFSET ((uint32_t)0x0000002C)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup DAC_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup DAC_Group1 DAC channels configuration
|
||||
* @brief DAC channels configuration: trigger, output buffer, data format
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
DAC channels configuration: trigger, output buffer, data format
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the DAC peripheral registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_DeInit(void)
|
||||
{
|
||||
/* Enable DAC reset state */
|
||||
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, ENABLE);
|
||||
/* Release DAC from reset state */
|
||||
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, DISABLE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the DAC peripheral according to the specified parameters
|
||||
* in the DAC_InitStruct.
|
||||
* @param DAC_Channel: the selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure that contains
|
||||
* the configuration information for the specified DAC channel.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct)
|
||||
{
|
||||
uint32_t tmpreg1 = 0, tmpreg2 = 0;
|
||||
|
||||
/* Check the DAC parameters */
|
||||
assert_param(IS_DAC_TRIGGER(DAC_InitStruct->DAC_Trigger));
|
||||
assert_param(IS_DAC_GENERATE_WAVE(DAC_InitStruct->DAC_WaveGeneration));
|
||||
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude));
|
||||
assert_param(IS_DAC_OUTPUT_BUFFER_STATE(DAC_InitStruct->DAC_OutputBuffer));
|
||||
|
||||
/*---------------------------- DAC CR Configuration --------------------------*/
|
||||
/* Get the DAC CR value */
|
||||
tmpreg1 = DAC->CR;
|
||||
/* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */
|
||||
tmpreg1 &= ~(CR_CLEAR_MASK << DAC_Channel);
|
||||
/* Configure for the selected DAC channel: buffer output, trigger,
|
||||
wave generation, mask/amplitude for wave generation */
|
||||
/* Set TSELx and TENx bits according to DAC_Trigger value */
|
||||
/* Set WAVEx bits according to DAC_WaveGeneration value */
|
||||
/* Set MAMPx bits according to DAC_LFSRUnmask_TriangleAmplitude value */
|
||||
/* Set BOFFx bit according to DAC_OutputBuffer value */
|
||||
tmpreg2 = (DAC_InitStruct->DAC_Trigger | DAC_InitStruct->DAC_WaveGeneration |
|
||||
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude | \
|
||||
DAC_InitStruct->DAC_OutputBuffer);
|
||||
/* Calculate CR register value depending on DAC_Channel */
|
||||
tmpreg1 |= tmpreg2 << DAC_Channel;
|
||||
/* Write to DAC CR */
|
||||
DAC->CR = tmpreg1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each DAC_InitStruct member with its default value.
|
||||
* @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure which will
|
||||
* be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct)
|
||||
{
|
||||
/*--------------- Reset DAC init structure parameters values -----------------*/
|
||||
/* Initialize the DAC_Trigger member */
|
||||
DAC_InitStruct->DAC_Trigger = DAC_Trigger_None;
|
||||
/* Initialize the DAC_WaveGeneration member */
|
||||
DAC_InitStruct->DAC_WaveGeneration = DAC_WaveGeneration_None;
|
||||
/* Initialize the DAC_LFSRUnmask_TriangleAmplitude member */
|
||||
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;
|
||||
/* Initialize the DAC_OutputBuffer member */
|
||||
DAC_InitStruct->DAC_OutputBuffer = DAC_OutputBuffer_Enable;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified DAC channel.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param NewState: new state of the DAC channel.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @note When the DAC channel is enabled the trigger source can no more be modified.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected DAC channel */
|
||||
DAC->CR |= (DAC_CR_EN1 << DAC_Channel);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected DAC channel */
|
||||
DAC->CR &= (~(DAC_CR_EN1 << DAC_Channel));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the selected DAC channel software trigger.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param NewState: new state of the selected DAC channel software trigger.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable software trigger for the selected DAC channel */
|
||||
DAC->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable software trigger for the selected DAC channel */
|
||||
DAC->SWTRIGR &= ~((uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables simultaneously the two DAC channels software triggers.
|
||||
* @param NewState: new state of the DAC channels software triggers.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_DualSoftwareTriggerCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable software trigger for both DAC channels */
|
||||
DAC->SWTRIGR |= DUAL_SWTRIG_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable software trigger for both DAC channels */
|
||||
DAC->SWTRIGR &= DUAL_SWTRIG_RESET;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the selected DAC channel wave generation.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param DAC_Wave: specifies the wave type to enable or disable.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Wave_Noise: noise wave generation
|
||||
* @arg DAC_Wave_Triangle: triangle wave generation
|
||||
* @param NewState: new state of the selected DAC channel wave generation.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_DAC_WAVE(DAC_Wave));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected wave generation for the selected DAC channel */
|
||||
DAC->CR |= DAC_Wave << DAC_Channel;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected wave generation for the selected DAC channel */
|
||||
DAC->CR &= ~(DAC_Wave << DAC_Channel);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the specified data holding register value for DAC channel1.
|
||||
* @param DAC_Align: Specifies the data alignment for DAC channel1.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Align_8b_R: 8bit right data alignment selected
|
||||
* @arg DAC_Align_12b_L: 12bit left data alignment selected
|
||||
* @arg DAC_Align_12b_R: 12bit right data alignment selected
|
||||
* @param Data: Data to be loaded in the selected data holding register.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data)
|
||||
{
|
||||
__IO uint32_t tmp = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_ALIGN(DAC_Align));
|
||||
assert_param(IS_DAC_DATA(Data));
|
||||
|
||||
tmp = (uint32_t)DAC_BASE;
|
||||
tmp += DHR12R1_OFFSET + DAC_Align;
|
||||
|
||||
/* Set the DAC channel1 selected data holding register */
|
||||
*(__IO uint32_t *) tmp = Data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the specified data holding register value for DAC channel2.
|
||||
* @param DAC_Align: Specifies the data alignment for DAC channel2.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Align_8b_R: 8bit right data alignment selected
|
||||
* @arg DAC_Align_12b_L: 12bit left data alignment selected
|
||||
* @arg DAC_Align_12b_R: 12bit right data alignment selected
|
||||
* @param Data: Data to be loaded in the selected data holding register.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data)
|
||||
{
|
||||
__IO uint32_t tmp = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_ALIGN(DAC_Align));
|
||||
assert_param(IS_DAC_DATA(Data));
|
||||
|
||||
tmp = (uint32_t)DAC_BASE;
|
||||
tmp += DHR12R2_OFFSET + DAC_Align;
|
||||
|
||||
/* Set the DAC channel2 selected data holding register */
|
||||
*(__IO uint32_t *)tmp = Data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the specified data holding register value for dual channel DAC.
|
||||
* @param DAC_Align: Specifies the data alignment for dual channel DAC.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Align_8b_R: 8bit right data alignment selected
|
||||
* @arg DAC_Align_12b_L: 12bit left data alignment selected
|
||||
* @arg DAC_Align_12b_R: 12bit right data alignment selected
|
||||
* @param Data2: Data for DAC Channel2 to be loaded in the selected data holding register.
|
||||
* @param Data1: Data for DAC Channel1 to be loaded in the selected data holding register.
|
||||
* @note In dual mode, a unique register access is required to write in both
|
||||
* DAC channels at the same time.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1)
|
||||
{
|
||||
uint32_t data = 0, tmp = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_ALIGN(DAC_Align));
|
||||
assert_param(IS_DAC_DATA(Data1));
|
||||
assert_param(IS_DAC_DATA(Data2));
|
||||
|
||||
/* Calculate and set dual DAC data holding register value */
|
||||
if (DAC_Align == DAC_Align_8b_R)
|
||||
{
|
||||
data = ((uint32_t)Data2 << 8) | Data1;
|
||||
}
|
||||
else
|
||||
{
|
||||
data = ((uint32_t)Data2 << 16) | Data1;
|
||||
}
|
||||
|
||||
tmp = (uint32_t)DAC_BASE;
|
||||
tmp += DHR12RD_OFFSET + DAC_Align;
|
||||
|
||||
/* Set the dual DAC selected data holding register */
|
||||
*(__IO uint32_t *)tmp = data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the last data output value of the selected DAC channel.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @retval The selected DAC channel data output value.
|
||||
*/
|
||||
uint16_t DAC_GetDataOutputValue(uint32_t DAC_Channel)
|
||||
{
|
||||
__IO uint32_t tmp = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
|
||||
tmp = (uint32_t) DAC_BASE ;
|
||||
tmp += DOR_OFFSET + ((uint32_t)DAC_Channel >> 2);
|
||||
|
||||
/* Returns the DAC channel data output register value */
|
||||
return (uint16_t) (*(__IO uint32_t*) tmp);
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup DAC_Group2 DMA management functions
|
||||
* @brief DMA management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
DMA management functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified DAC channel DMA request.
|
||||
* @note When enabled DMA1 is generated when an external trigger (EXTI Line9,
|
||||
* TIM2, TIM4, TIM5, TIM6, TIM7 or TIM8 but not a software trigger) occurs.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param NewState: new state of the selected DAC channel DMA request.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @note The DAC channel1 is mapped on DMA1 Stream 5 channel7 which must be
|
||||
* already configured.
|
||||
* @note The DAC channel2 is mapped on DMA1 Stream 6 channel7 which must be
|
||||
* already configured.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_DMACmd(uint32_t DAC_Channel, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected DAC channel DMA request */
|
||||
DAC->CR |= (DAC_CR_DMAEN1 << DAC_Channel);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected DAC channel DMA request */
|
||||
DAC->CR &= (~(DAC_CR_DMAEN1 << DAC_Channel));
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup DAC_Group3 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified DAC interrupts.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param DAC_IT: specifies the DAC interrupt sources to be enabled or disabled.
|
||||
* This parameter can be the following values:
|
||||
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
|
||||
* @note The DMA underrun occurs when a second external trigger arrives before the
|
||||
* acknowledgement for the first external trigger is received (first request).
|
||||
* @param NewState: new state of the specified DAC interrupts.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
assert_param(IS_DAC_IT(DAC_IT));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected DAC interrupts */
|
||||
DAC->CR |= (DAC_IT << DAC_Channel);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected DAC interrupts */
|
||||
DAC->CR &= (~(uint32_t)(DAC_IT << DAC_Channel));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified DAC flag is set or not.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param DAC_FLAG: specifies the flag to check.
|
||||
* This parameter can be only of the following value:
|
||||
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
|
||||
* @note The DMA underrun occurs when a second external trigger arrives before the
|
||||
* acknowledgement for the first external trigger is received (first request).
|
||||
* @retval The new state of DAC_FLAG (SET or RESET).
|
||||
*/
|
||||
FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_DAC_FLAG(DAC_FLAG));
|
||||
|
||||
/* Check the status of the specified DAC flag */
|
||||
if ((DAC->SR & (DAC_FLAG << DAC_Channel)) != (uint8_t)RESET)
|
||||
{
|
||||
/* DAC_FLAG is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* DAC_FLAG is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the DAC_FLAG status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the DAC channel's pending flags.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param DAC_FLAG: specifies the flag to clear.
|
||||
* This parameter can be of the following value:
|
||||
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
|
||||
* @note The DMA underrun occurs when a second external trigger arrives before the
|
||||
* acknowledgement for the first external trigger is received (first request).
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_DAC_FLAG(DAC_FLAG));
|
||||
|
||||
/* Clear the selected DAC flags */
|
||||
DAC->SR = (DAC_FLAG << DAC_Channel);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified DAC interrupt has occurred or not.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param DAC_IT: specifies the DAC interrupt source to check.
|
||||
* This parameter can be the following values:
|
||||
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
|
||||
* @note The DMA underrun occurs when a second external trigger arrives before the
|
||||
* acknowledgement for the first external trigger is received (first request).
|
||||
* @retval The new state of DAC_IT (SET or RESET).
|
||||
*/
|
||||
ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT)
|
||||
{
|
||||
ITStatus bitstatus = RESET;
|
||||
uint32_t enablestatus = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_DAC_IT(DAC_IT));
|
||||
|
||||
/* Get the DAC_IT enable bit status */
|
||||
enablestatus = (DAC->CR & (DAC_IT << DAC_Channel)) ;
|
||||
|
||||
/* Check the status of the specified DAC interrupt */
|
||||
if (((DAC->SR & (DAC_IT << DAC_Channel)) != (uint32_t)RESET) && enablestatus)
|
||||
{
|
||||
/* DAC_IT is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* DAC_IT is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the DAC_IT status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the DAC channel's interrupt pending bits.
|
||||
* @param DAC_Channel: The selected DAC channel.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DAC_Channel_1: DAC Channel1 selected
|
||||
* @arg DAC_Channel_2: DAC Channel2 selected
|
||||
* @param DAC_IT: specifies the DAC interrupt pending bit to clear.
|
||||
* This parameter can be the following values:
|
||||
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
|
||||
* @note The DMA underrun occurs when a second external trigger arrives before the
|
||||
* acknowledgement for the first external trigger is received (first request).
|
||||
* @retval None
|
||||
*/
|
||||
void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DAC_CHANNEL(DAC_Channel));
|
||||
assert_param(IS_DAC_IT(DAC_IT));
|
||||
|
||||
/* Clear the selected DAC interrupt pending bits */
|
||||
DAC->SR = (DAC_IT << DAC_Channel);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
174
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dbgmcu.c
Executable file
174
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dbgmcu.c
Executable file
@@ -0,0 +1,174 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_dbgmcu.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides all the DBGMCU firmware functions.
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_dbgmcu.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup DBGMCU
|
||||
* @brief DBGMCU driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup DBGMCU_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Returns the device revision identifier.
|
||||
* @param None
|
||||
* @retval Device revision identifier
|
||||
*/
|
||||
uint32_t DBGMCU_GetREVID(void)
|
||||
{
|
||||
return(DBGMCU->IDCODE >> 16);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the device identifier.
|
||||
* @param None
|
||||
* @retval Device identifier
|
||||
*/
|
||||
uint32_t DBGMCU_GetDEVID(void)
|
||||
{
|
||||
return(DBGMCU->IDCODE & IDCODE_DEVID_MASK);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configures low power mode behavior when the MCU is in Debug mode.
|
||||
* @param DBGMCU_Periph: specifies the low power mode.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg DBGMCU_SLEEP: Keep debugger connection during SLEEP mode
|
||||
* @arg DBGMCU_STOP: Keep debugger connection during STOP mode
|
||||
* @arg DBGMCU_STANDBY: Keep debugger connection during STANDBY mode
|
||||
* @param NewState: new state of the specified low power mode in Debug mode.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DBGMCU_Config(uint32_t DBGMCU_Periph, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DBGMCU_PERIPH(DBGMCU_Periph));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
DBGMCU->CR |= DBGMCU_Periph;
|
||||
}
|
||||
else
|
||||
{
|
||||
DBGMCU->CR &= ~DBGMCU_Periph;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configures APB1 peripheral behavior when the MCU is in Debug mode.
|
||||
* @param DBGMCU_Periph: specifies the APB1 peripheral.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg DBGMCU_TIM2_STOP: TIM2 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM3_STOP: TIM3 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM4_STOP: TIM4 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM5_STOP: TIM5 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM6_STOP: TIM6 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM7_STOP: TIM7 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM12_STOP: TIM12 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM13_STOP: TIM13 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM14_STOP: TIM14 counter stopped when Core is halted
|
||||
* @arg DBGMCU_RTC_STOP: RTC Calendar and Wakeup counter stopped when Core is halted.
|
||||
* @arg DBGMCU_WWDG_STOP: Debug WWDG stopped when Core is halted
|
||||
* @arg DBGMCU_IWDG_STOP: Debug IWDG stopped when Core is halted
|
||||
* @arg DBGMCU_I2C1_SMBUS_TIMEOUT: I2C1 SMBUS timeout mode stopped when Core is halted
|
||||
* @arg DBGMCU_I2C2_SMBUS_TIMEOUT: I2C2 SMBUS timeout mode stopped when Core is halted
|
||||
* @arg DBGMCU_I2C3_SMBUS_TIMEOUT: I2C3 SMBUS timeout mode stopped when Core is halted
|
||||
* @arg DBGMCU_CAN2_STOP: Debug CAN1 stopped when Core is halted
|
||||
* @arg DBGMCU_CAN1_STOP: Debug CAN2 stopped when Core is halted
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DBGMCU_APB1PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DBGMCU_APB1PERIPH(DBGMCU_Periph));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
DBGMCU->APB1FZ |= DBGMCU_Periph;
|
||||
}
|
||||
else
|
||||
{
|
||||
DBGMCU->APB1FZ &= ~DBGMCU_Periph;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configures APB2 peripheral behavior when the MCU is in Debug mode.
|
||||
* @param DBGMCU_Periph: specifies the APB2 peripheral.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg DBGMCU_TIM1_STOP: TIM1 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM8_STOP: TIM8 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM9_STOP: TIM9 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM10_STOP: TIM10 counter stopped when Core is halted
|
||||
* @arg DBGMCU_TIM11_STOP: TIM11 counter stopped when Core is halted
|
||||
* @param NewState: new state of the specified peripheral in Debug mode.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DBGMCU_APB2PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DBGMCU_APB2PERIPH(DBGMCU_Periph));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
DBGMCU->APB2FZ |= DBGMCU_Periph;
|
||||
}
|
||||
else
|
||||
{
|
||||
DBGMCU->APB2FZ &= ~DBGMCU_Periph;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
534
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dcmi.c
Executable file
534
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dcmi.c
Executable file
@@ -0,0 +1,534 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_dcmi.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the DCMI peripheral:
|
||||
* - Initialization and Configuration
|
||||
* - Image capture functions
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
*
|
||||
* The sequence below describes how to use this driver to capture image
|
||||
* from a camera module connected to the DCMI Interface.
|
||||
* This sequence does not take into account the configuration of the
|
||||
* camera module, which should be made before to configure and enable
|
||||
* the DCMI to capture images.
|
||||
*
|
||||
* 1. Enable the clock for the DCMI and associated GPIOs using the following functions:
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_DCMI, ENABLE);
|
||||
* RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
|
||||
*
|
||||
* 2. DCMI pins configuration
|
||||
* - Connect the involved DCMI pins to AF13 using the following function
|
||||
* GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_DCMI);
|
||||
* - Configure these DCMI pins in alternate function mode by calling the function
|
||||
* GPIO_Init();
|
||||
*
|
||||
* 3. Declare a DCMI_InitTypeDef structure, for example:
|
||||
* DCMI_InitTypeDef DCMI_InitStructure;
|
||||
* and fill the DCMI_InitStructure variable with the allowed values
|
||||
* of the structure member.
|
||||
*
|
||||
* 4. Initialize the DCMI interface by calling the function
|
||||
* DCMI_Init(&DCMI_InitStructure);
|
||||
*
|
||||
* 5. Configure the DMA2_Stream1 channel1 to transfer Data from DCMI DR
|
||||
* register to the destination memory buffer.
|
||||
*
|
||||
* 6. Enable DCMI interface using the function
|
||||
* DCMI_Cmd(ENABLE);
|
||||
*
|
||||
* 7. Start the image capture using the function
|
||||
* DCMI_CaptureCmd(ENABLE);
|
||||
*
|
||||
* 8. At this stage the DCMI interface waits for the first start of frame,
|
||||
* then a DMA request is generated continuously/once (depending on the
|
||||
* mode used, Continuous/Snapshot) to transfer the received data into
|
||||
* the destination memory.
|
||||
*
|
||||
* @note If you need to capture only a rectangular window from the received
|
||||
* image, you have to use the DCMI_CROPConfig() function to configure
|
||||
* the coordinates and size of the window to be captured, then enable
|
||||
* the Crop feature using DCMI_CROPCmd(ENABLE);
|
||||
* In this case, the Crop configuration should be made before to enable
|
||||
* and start the DCMI interface.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_dcmi.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup DCMI
|
||||
* @brief DCMI driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup DCMI_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup DCMI_Group1 Initialization and Configuration functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Initialization and Configuration functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the DCMI registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_DeInit(void)
|
||||
{
|
||||
DCMI->CR = 0x0;
|
||||
DCMI->IER = 0x0;
|
||||
DCMI->ICR = 0x1F;
|
||||
DCMI->ESCR = 0x0;
|
||||
DCMI->ESUR = 0x0;
|
||||
DCMI->CWSTRTR = 0x0;
|
||||
DCMI->CWSIZER = 0x0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the DCMI according to the specified parameters in the DCMI_InitStruct.
|
||||
* @param DCMI_InitStruct: pointer to a DCMI_InitTypeDef structure that contains
|
||||
* the configuration information for the DCMI.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_Init(DCMI_InitTypeDef* DCMI_InitStruct)
|
||||
{
|
||||
uint32_t temp = 0x0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DCMI_CAPTURE_MODE(DCMI_InitStruct->DCMI_CaptureMode));
|
||||
assert_param(IS_DCMI_SYNCHRO(DCMI_InitStruct->DCMI_SynchroMode));
|
||||
assert_param(IS_DCMI_PCKPOLARITY(DCMI_InitStruct->DCMI_PCKPolarity));
|
||||
assert_param(IS_DCMI_VSPOLARITY(DCMI_InitStruct->DCMI_VSPolarity));
|
||||
assert_param(IS_DCMI_HSPOLARITY(DCMI_InitStruct->DCMI_HSPolarity));
|
||||
assert_param(IS_DCMI_CAPTURE_RATE(DCMI_InitStruct->DCMI_CaptureRate));
|
||||
assert_param(IS_DCMI_EXTENDED_DATA(DCMI_InitStruct->DCMI_ExtendedDataMode));
|
||||
|
||||
/* The DCMI configuration registers should be programmed correctly before
|
||||
enabling the CR_ENABLE Bit and the CR_CAPTURE Bit */
|
||||
DCMI->CR &= ~(DCMI_CR_ENABLE | DCMI_CR_CAPTURE);
|
||||
|
||||
/* Reset the old DCMI configuration */
|
||||
temp = DCMI->CR;
|
||||
|
||||
temp &= ~((uint32_t)DCMI_CR_CM | DCMI_CR_ESS | DCMI_CR_PCKPOL |
|
||||
DCMI_CR_HSPOL | DCMI_CR_VSPOL | DCMI_CR_FCRC_0 |
|
||||
DCMI_CR_FCRC_1 | DCMI_CR_EDM_0 | DCMI_CR_EDM_1);
|
||||
|
||||
/* Sets the new configuration of the DCMI peripheral */
|
||||
temp |= ((uint32_t)DCMI_InitStruct->DCMI_CaptureMode |
|
||||
DCMI_InitStruct->DCMI_SynchroMode |
|
||||
DCMI_InitStruct->DCMI_PCKPolarity |
|
||||
DCMI_InitStruct->DCMI_VSPolarity |
|
||||
DCMI_InitStruct->DCMI_HSPolarity |
|
||||
DCMI_InitStruct->DCMI_CaptureRate |
|
||||
DCMI_InitStruct->DCMI_ExtendedDataMode);
|
||||
|
||||
DCMI->CR = temp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each DCMI_InitStruct member with its default value.
|
||||
* @param DCMI_InitStruct : pointer to a DCMI_InitTypeDef structure which will
|
||||
* be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_StructInit(DCMI_InitTypeDef* DCMI_InitStruct)
|
||||
{
|
||||
/* Set the default configuration */
|
||||
DCMI_InitStruct->DCMI_CaptureMode = DCMI_CaptureMode_Continuous;
|
||||
DCMI_InitStruct->DCMI_SynchroMode = DCMI_SynchroMode_Hardware;
|
||||
DCMI_InitStruct->DCMI_PCKPolarity = DCMI_PCKPolarity_Falling;
|
||||
DCMI_InitStruct->DCMI_VSPolarity = DCMI_VSPolarity_Low;
|
||||
DCMI_InitStruct->DCMI_HSPolarity = DCMI_HSPolarity_Low;
|
||||
DCMI_InitStruct->DCMI_CaptureRate = DCMI_CaptureRate_All_Frame;
|
||||
DCMI_InitStruct->DCMI_ExtendedDataMode = DCMI_ExtendedDataMode_8b;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the DCMI peripheral CROP mode according to the specified
|
||||
* parameters in the DCMI_CROPInitStruct.
|
||||
* @note This function should be called before to enable and start the DCMI interface.
|
||||
* @param DCMI_CROPInitStruct: pointer to a DCMI_CROPInitTypeDef structure that
|
||||
* contains the configuration information for the DCMI peripheral CROP mode.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_CROPConfig(DCMI_CROPInitTypeDef* DCMI_CROPInitStruct)
|
||||
{
|
||||
/* Sets the CROP window coordinates */
|
||||
DCMI->CWSTRTR = (uint32_t)((uint32_t)DCMI_CROPInitStruct->DCMI_HorizontalOffsetCount |
|
||||
((uint32_t)DCMI_CROPInitStruct->DCMI_VerticalStartLine << 16));
|
||||
|
||||
/* Sets the CROP window size */
|
||||
DCMI->CWSIZER = (uint32_t)(DCMI_CROPInitStruct->DCMI_CaptureCount |
|
||||
((uint32_t)DCMI_CROPInitStruct->DCMI_VerticalLineCount << 16));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the DCMI Crop feature.
|
||||
* @note This function should be called before to enable and start the DCMI interface.
|
||||
* @param NewState: new state of the DCMI Crop feature.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_CROPCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the DCMI Crop feature */
|
||||
DCMI->CR |= (uint32_t)DCMI_CR_CROP;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the DCMI Crop feature */
|
||||
DCMI->CR &= ~(uint32_t)DCMI_CR_CROP;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets the embedded synchronization codes
|
||||
* @param DCMI_CodesInitTypeDef: pointer to a DCMI_CodesInitTypeDef structure that
|
||||
* contains the embedded synchronization codes for the DCMI peripheral.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_SetEmbeddedSynchroCodes(DCMI_CodesInitTypeDef* DCMI_CodesInitStruct)
|
||||
{
|
||||
DCMI->ESCR = (uint32_t)(DCMI_CodesInitStruct->DCMI_FrameStartCode |
|
||||
((uint32_t)DCMI_CodesInitStruct->DCMI_LineStartCode << 8)|
|
||||
((uint32_t)DCMI_CodesInitStruct->DCMI_LineEndCode << 16)|
|
||||
((uint32_t)DCMI_CodesInitStruct->DCMI_FrameEndCode << 24));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the DCMI JPEG format.
|
||||
* @note The Crop and Embedded Synchronization features cannot be used in this mode.
|
||||
* @param NewState: new state of the DCMI JPEG format.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_JPEGCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the DCMI JPEG format */
|
||||
DCMI->CR |= (uint32_t)DCMI_CR_JPEG;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the DCMI JPEG format */
|
||||
DCMI->CR &= ~(uint32_t)DCMI_CR_JPEG;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup DCMI_Group2 Image capture functions
|
||||
* @brief Image capture functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Image capture functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the DCMI interface.
|
||||
* @param NewState: new state of the DCMI interface.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_Cmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the DCMI by setting ENABLE bit */
|
||||
DCMI->CR |= (uint32_t)DCMI_CR_ENABLE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the DCMI by clearing ENABLE bit */
|
||||
DCMI->CR &= ~(uint32_t)DCMI_CR_ENABLE;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the DCMI Capture.
|
||||
* @param NewState: new state of the DCMI capture.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_CaptureCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the DCMI Capture */
|
||||
DCMI->CR |= (uint32_t)DCMI_CR_CAPTURE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the DCMI Capture */
|
||||
DCMI->CR &= ~(uint32_t)DCMI_CR_CAPTURE;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reads the data stored in the DR register.
|
||||
* @param None
|
||||
* @retval Data register value
|
||||
*/
|
||||
uint32_t DCMI_ReadData(void)
|
||||
{
|
||||
return DCMI->DR;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup DCMI_Group3 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the DCMI interface interrupts.
|
||||
* @param DCMI_IT: specifies the DCMI interrupt sources to be enabled or disabled.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg DCMI_IT_FRAME: Frame capture complete interrupt mask
|
||||
* @arg DCMI_IT_OVF: Overflow interrupt mask
|
||||
* @arg DCMI_IT_ERR: Synchronization error interrupt mask
|
||||
* @arg DCMI_IT_VSYNC: VSYNC interrupt mask
|
||||
* @arg DCMI_IT_LINE: Line interrupt mask
|
||||
* @param NewState: new state of the specified DCMI interrupts.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_ITConfig(uint16_t DCMI_IT, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DCMI_CONFIG_IT(DCMI_IT));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the Interrupt sources */
|
||||
DCMI->IER |= DCMI_IT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the Interrupt sources */
|
||||
DCMI->IER &= (uint16_t)(~DCMI_IT);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the DCMI interface flag is set or not.
|
||||
* @param DCMI_FLAG: specifies the flag to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DCMI_FLAG_FRAMERI: Frame capture complete Raw flag mask
|
||||
* @arg DCMI_FLAG_OVFRI: Overflow Raw flag mask
|
||||
* @arg DCMI_FLAG_ERRRI: Synchronization error Raw flag mask
|
||||
* @arg DCMI_FLAG_VSYNCRI: VSYNC Raw flag mask
|
||||
* @arg DCMI_FLAG_LINERI: Line Raw flag mask
|
||||
* @arg DCMI_FLAG_FRAMEMI: Frame capture complete Masked flag mask
|
||||
* @arg DCMI_FLAG_OVFMI: Overflow Masked flag mask
|
||||
* @arg DCMI_FLAG_ERRMI: Synchronization error Masked flag mask
|
||||
* @arg DCMI_FLAG_VSYNCMI: VSYNC Masked flag mask
|
||||
* @arg DCMI_FLAG_LINEMI: Line Masked flag mask
|
||||
* @arg DCMI_FLAG_HSYNC: HSYNC flag mask
|
||||
* @arg DCMI_FLAG_VSYNC: VSYNC flag mask
|
||||
* @arg DCMI_FLAG_FNE: Fifo not empty flag mask
|
||||
* @retval The new state of DCMI_FLAG (SET or RESET).
|
||||
*/
|
||||
FlagStatus DCMI_GetFlagStatus(uint16_t DCMI_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
uint32_t dcmireg, tempreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DCMI_GET_FLAG(DCMI_FLAG));
|
||||
|
||||
/* Get the DCMI register index */
|
||||
dcmireg = (((uint16_t)DCMI_FLAG) >> 12);
|
||||
|
||||
if (dcmireg == 0x01) /* The FLAG is in RISR register */
|
||||
{
|
||||
tempreg= DCMI->RISR;
|
||||
}
|
||||
else if (dcmireg == 0x02) /* The FLAG is in SR register */
|
||||
{
|
||||
tempreg = DCMI->SR;
|
||||
}
|
||||
else /* The FLAG is in MISR register */
|
||||
{
|
||||
tempreg = DCMI->MISR;
|
||||
}
|
||||
|
||||
if ((tempreg & DCMI_FLAG) != (uint16_t)RESET )
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the DCMI_FLAG status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the DCMI's pending flags.
|
||||
* @param DCMI_FLAG: specifies the flag to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg DCMI_FLAG_FRAMERI: Frame capture complete Raw flag mask
|
||||
* @arg DCMI_FLAG_OVFRI: Overflow Raw flag mask
|
||||
* @arg DCMI_FLAG_ERRRI: Synchronization error Raw flag mask
|
||||
* @arg DCMI_FLAG_VSYNCRI: VSYNC Raw flag mask
|
||||
* @arg DCMI_FLAG_LINERI: Line Raw flag mask
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_ClearFlag(uint16_t DCMI_FLAG)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DCMI_CLEAR_FLAG(DCMI_FLAG));
|
||||
|
||||
/* Clear the flag by writing in the ICR register 1 in the corresponding
|
||||
Flag position*/
|
||||
|
||||
DCMI->ICR = DCMI_FLAG;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the DCMI interrupt has occurred or not.
|
||||
* @param DCMI_IT: specifies the DCMI interrupt source to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg DCMI_IT_FRAME: Frame capture complete interrupt mask
|
||||
* @arg DCMI_IT_OVF: Overflow interrupt mask
|
||||
* @arg DCMI_IT_ERR: Synchronization error interrupt mask
|
||||
* @arg DCMI_IT_VSYNC: VSYNC interrupt mask
|
||||
* @arg DCMI_IT_LINE: Line interrupt mask
|
||||
* @retval The new state of DCMI_IT (SET or RESET).
|
||||
*/
|
||||
ITStatus DCMI_GetITStatus(uint16_t DCMI_IT)
|
||||
{
|
||||
ITStatus bitstatus = RESET;
|
||||
uint32_t itstatus = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DCMI_GET_IT(DCMI_IT));
|
||||
|
||||
itstatus = DCMI->MISR & DCMI_IT; /* Only masked interrupts are checked */
|
||||
|
||||
if ((itstatus != (uint16_t)RESET))
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the DCMI's interrupt pending bits.
|
||||
* @param DCMI_IT: specifies the DCMI interrupt pending bit to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg DCMI_IT_FRAME: Frame capture complete interrupt mask
|
||||
* @arg DCMI_IT_OVF: Overflow interrupt mask
|
||||
* @arg DCMI_IT_ERR: Synchronization error interrupt mask
|
||||
* @arg DCMI_IT_VSYNC: VSYNC interrupt mask
|
||||
* @arg DCMI_IT_LINE: Line interrupt mask
|
||||
* @retval None
|
||||
*/
|
||||
void DCMI_ClearITPendingBit(uint16_t DCMI_IT)
|
||||
{
|
||||
/* Clear the interrupt pending Bit by writing in the ICR register 1 in the
|
||||
corresponding pending Bit position*/
|
||||
|
||||
DCMI->ICR = DCMI_IT;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
1283
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dma.c
Executable file
1283
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_dma.c
Executable file
File diff suppressed because it is too large
Load Diff
306
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_exti.c
Executable file
306
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_exti.c
Executable file
@@ -0,0 +1,306 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_exti.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the EXTI peripheral:
|
||||
* - Initialization and Configuration
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* EXTI features
|
||||
* ===================================================================
|
||||
*
|
||||
* External interrupt/event lines are mapped as following:
|
||||
* 1- All available GPIO pins are connected to the 16 external
|
||||
* interrupt/event lines from EXTI0 to EXTI15.
|
||||
* 2- EXTI line 16 is connected to the PVD Output
|
||||
* 3- EXTI line 17 is connected to the RTC Alarm event
|
||||
* 4- EXTI line 18 is connected to the USB OTG FS Wakeup from suspend event
|
||||
* 5- EXTI line 19 is connected to the Ethernet Wakeup event
|
||||
* 6- EXTI line 20 is connected to the USB OTG HS (configured in FS) Wakeup event
|
||||
* 7- EXTI line 21 is connected to the RTC Tamper and Time Stamp events
|
||||
* 8- EXTI line 22 is connected to the RTC Wakeup event
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
*
|
||||
* In order to use an I/O pin as an external interrupt source, follow
|
||||
* steps below:
|
||||
* 1- Configure the I/O in input mode using GPIO_Init()
|
||||
* 2- Select the input source pin for the EXTI line using SYSCFG_EXTILineConfig()
|
||||
* 3- Select the mode(interrupt, event) and configure the trigger
|
||||
* selection (Rising, falling or both) using EXTI_Init()
|
||||
* 4- Configure NVIC IRQ channel mapped to the EXTI line using NVIC_Init()
|
||||
*
|
||||
* @note SYSCFG APB clock must be enabled to get write access to SYSCFG_EXTICRx
|
||||
* registers using RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_exti.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup EXTI
|
||||
* @brief EXTI driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
|
||||
#define EXTI_LINENONE ((uint32_t)0x00000) /* No interrupt selected */
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup EXTI_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup EXTI_Group1 Initialization and Configuration functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Initialization and Configuration functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the EXTI peripheral registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void EXTI_DeInit(void)
|
||||
{
|
||||
EXTI->IMR = 0x00000000;
|
||||
EXTI->EMR = 0x00000000;
|
||||
EXTI->RTSR = 0x00000000;
|
||||
EXTI->FTSR = 0x00000000;
|
||||
EXTI->PR = 0x007FFFFF;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the EXTI peripheral according to the specified
|
||||
* parameters in the EXTI_InitStruct.
|
||||
* @param EXTI_InitStruct: pointer to a EXTI_InitTypeDef structure
|
||||
* that contains the configuration information for the EXTI peripheral.
|
||||
* @retval None
|
||||
*/
|
||||
void EXTI_Init(EXTI_InitTypeDef* EXTI_InitStruct)
|
||||
{
|
||||
uint32_t tmp = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_EXTI_MODE(EXTI_InitStruct->EXTI_Mode));
|
||||
assert_param(IS_EXTI_TRIGGER(EXTI_InitStruct->EXTI_Trigger));
|
||||
assert_param(IS_EXTI_LINE(EXTI_InitStruct->EXTI_Line));
|
||||
assert_param(IS_FUNCTIONAL_STATE(EXTI_InitStruct->EXTI_LineCmd));
|
||||
|
||||
tmp = (uint32_t)EXTI_BASE;
|
||||
|
||||
if (EXTI_InitStruct->EXTI_LineCmd != DISABLE)
|
||||
{
|
||||
/* Clear EXTI line configuration */
|
||||
EXTI->IMR &= ~EXTI_InitStruct->EXTI_Line;
|
||||
EXTI->EMR &= ~EXTI_InitStruct->EXTI_Line;
|
||||
|
||||
tmp += EXTI_InitStruct->EXTI_Mode;
|
||||
|
||||
*(__IO uint32_t *) tmp |= EXTI_InitStruct->EXTI_Line;
|
||||
|
||||
/* Clear Rising Falling edge configuration */
|
||||
EXTI->RTSR &= ~EXTI_InitStruct->EXTI_Line;
|
||||
EXTI->FTSR &= ~EXTI_InitStruct->EXTI_Line;
|
||||
|
||||
/* Select the trigger for the selected external interrupts */
|
||||
if (EXTI_InitStruct->EXTI_Trigger == EXTI_Trigger_Rising_Falling)
|
||||
{
|
||||
/* Rising Falling edge */
|
||||
EXTI->RTSR |= EXTI_InitStruct->EXTI_Line;
|
||||
EXTI->FTSR |= EXTI_InitStruct->EXTI_Line;
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp = (uint32_t)EXTI_BASE;
|
||||
tmp += EXTI_InitStruct->EXTI_Trigger;
|
||||
|
||||
*(__IO uint32_t *) tmp |= EXTI_InitStruct->EXTI_Line;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp += EXTI_InitStruct->EXTI_Mode;
|
||||
|
||||
/* Disable the selected external lines */
|
||||
*(__IO uint32_t *) tmp &= ~EXTI_InitStruct->EXTI_Line;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each EXTI_InitStruct member with its reset value.
|
||||
* @param EXTI_InitStruct: pointer to a EXTI_InitTypeDef structure which will
|
||||
* be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void EXTI_StructInit(EXTI_InitTypeDef* EXTI_InitStruct)
|
||||
{
|
||||
EXTI_InitStruct->EXTI_Line = EXTI_LINENONE;
|
||||
EXTI_InitStruct->EXTI_Mode = EXTI_Mode_Interrupt;
|
||||
EXTI_InitStruct->EXTI_Trigger = EXTI_Trigger_Falling;
|
||||
EXTI_InitStruct->EXTI_LineCmd = DISABLE;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generates a Software interrupt on selected EXTI line.
|
||||
* @param EXTI_Line: specifies the EXTI line on which the software interrupt
|
||||
* will be generated.
|
||||
* This parameter can be any combination of EXTI_Linex where x can be (0..22)
|
||||
* @retval None
|
||||
*/
|
||||
void EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_EXTI_LINE(EXTI_Line));
|
||||
|
||||
EXTI->SWIER |= EXTI_Line;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup EXTI_Group2 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified EXTI line flag is set or not.
|
||||
* @param EXTI_Line: specifies the EXTI line flag to check.
|
||||
* This parameter can be EXTI_Linex where x can be(0..22)
|
||||
* @retval The new state of EXTI_Line (SET or RESET).
|
||||
*/
|
||||
FlagStatus EXTI_GetFlagStatus(uint32_t EXTI_Line)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GET_EXTI_LINE(EXTI_Line));
|
||||
|
||||
if ((EXTI->PR & EXTI_Line) != (uint32_t)RESET)
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the EXTI's line pending flags.
|
||||
* @param EXTI_Line: specifies the EXTI lines flags to clear.
|
||||
* This parameter can be any combination of EXTI_Linex where x can be (0..22)
|
||||
* @retval None
|
||||
*/
|
||||
void EXTI_ClearFlag(uint32_t EXTI_Line)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_EXTI_LINE(EXTI_Line));
|
||||
|
||||
EXTI->PR = EXTI_Line;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified EXTI line is asserted or not.
|
||||
* @param EXTI_Line: specifies the EXTI line to check.
|
||||
* This parameter can be EXTI_Linex where x can be(0..22)
|
||||
* @retval The new state of EXTI_Line (SET or RESET).
|
||||
*/
|
||||
ITStatus EXTI_GetITStatus(uint32_t EXTI_Line)
|
||||
{
|
||||
ITStatus bitstatus = RESET;
|
||||
uint32_t enablestatus = 0;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GET_EXTI_LINE(EXTI_Line));
|
||||
|
||||
enablestatus = EXTI->IMR & EXTI_Line;
|
||||
if (((EXTI->PR & EXTI_Line) != (uint32_t)RESET) && (enablestatus != (uint32_t)RESET))
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the EXTI's line pending bits.
|
||||
* @param EXTI_Line: specifies the EXTI lines to clear.
|
||||
* This parameter can be any combination of EXTI_Linex where x can be (0..22)
|
||||
* @retval None
|
||||
*/
|
||||
void EXTI_ClearITPendingBit(uint32_t EXTI_Line)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_EXTI_LINE(EXTI_Line));
|
||||
|
||||
EXTI->PR = EXTI_Line;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
1056
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_flash.c
Executable file
1056
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_flash.c
Executable file
File diff suppressed because it is too large
Load Diff
982
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_fsmc.c
Executable file
982
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_fsmc.c
Executable file
@@ -0,0 +1,982 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_fsmc.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the FSMC peripheral:
|
||||
* - Interface with SRAM, PSRAM, NOR and OneNAND memories
|
||||
* - Interface with NAND memories
|
||||
* - Interface with 16-bit PC Card compatible memories
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
******************************************************************************
|
||||
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_fsmc.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup FSMC
|
||||
* @brief FSMC driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
|
||||
/* --------------------- FSMC registers bit mask ---------------------------- */
|
||||
/* FSMC BCRx Mask */
|
||||
#define BCR_MBKEN_SET ((uint32_t)0x00000001)
|
||||
#define BCR_MBKEN_RESET ((uint32_t)0x000FFFFE)
|
||||
#define BCR_FACCEN_SET ((uint32_t)0x00000040)
|
||||
|
||||
/* FSMC PCRx Mask */
|
||||
#define PCR_PBKEN_SET ((uint32_t)0x00000004)
|
||||
#define PCR_PBKEN_RESET ((uint32_t)0x000FFFFB)
|
||||
#define PCR_ECCEN_SET ((uint32_t)0x00000040)
|
||||
#define PCR_ECCEN_RESET ((uint32_t)0x000FFFBF)
|
||||
#define PCR_MEMORYTYPE_NAND ((uint32_t)0x00000008)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup FSMC_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup FSMC_Group1 NOR/SRAM Controller functions
|
||||
* @brief NOR/SRAM Controller functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
NOR/SRAM Controller functions
|
||||
===============================================================================
|
||||
|
||||
The following sequence should be followed to configure the FSMC to interface with
|
||||
SRAM, PSRAM, NOR or OneNAND memory connected to the NOR/SRAM Bank:
|
||||
|
||||
1. Enable the clock for the FSMC and associated GPIOs using the following functions:
|
||||
RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE);
|
||||
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
|
||||
|
||||
2. FSMC pins configuration
|
||||
- Connect the involved FSMC pins to AF12 using the following function
|
||||
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FSMC);
|
||||
- Configure these FSMC pins in alternate function mode by calling the function
|
||||
GPIO_Init();
|
||||
|
||||
3. Declare a FSMC_NORSRAMInitTypeDef structure, for example:
|
||||
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
|
||||
and fill the FSMC_NORSRAMInitStructure variable with the allowed values of
|
||||
the structure member.
|
||||
|
||||
4. Initialize the NOR/SRAM Controller by calling the function
|
||||
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
|
||||
|
||||
5. Then enable the NOR/SRAM Bank, for example:
|
||||
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE);
|
||||
|
||||
6. At this stage you can read/write from/to the memory connected to the NOR/SRAM Bank.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the FSMC NOR/SRAM Banks registers to their default
|
||||
* reset values.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1
|
||||
* @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2
|
||||
* @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3
|
||||
* @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NORSRAMDeInit(uint32_t FSMC_Bank)
|
||||
{
|
||||
/* Check the parameter */
|
||||
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
|
||||
|
||||
/* FSMC_Bank1_NORSRAM1 */
|
||||
if(FSMC_Bank == FSMC_Bank1_NORSRAM1)
|
||||
{
|
||||
FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030DB;
|
||||
}
|
||||
/* FSMC_Bank1_NORSRAM2, FSMC_Bank1_NORSRAM3 or FSMC_Bank1_NORSRAM4 */
|
||||
else
|
||||
{
|
||||
FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030D2;
|
||||
}
|
||||
FSMC_Bank1->BTCR[FSMC_Bank + 1] = 0x0FFFFFFF;
|
||||
FSMC_Bank1E->BWTR[FSMC_Bank] = 0x0FFFFFFF;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the FSMC NOR/SRAM Banks according to the specified
|
||||
* parameters in the FSMC_NORSRAMInitStruct.
|
||||
* @param FSMC_NORSRAMInitStruct : pointer to a FSMC_NORSRAMInitTypeDef structure
|
||||
* that contains the configuration information for the FSMC NOR/SRAM
|
||||
* specified Banks.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NORSRAMInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_NORSRAMInitStruct->FSMC_Bank));
|
||||
assert_param(IS_FSMC_MUX(FSMC_NORSRAMInitStruct->FSMC_DataAddressMux));
|
||||
assert_param(IS_FSMC_MEMORY(FSMC_NORSRAMInitStruct->FSMC_MemoryType));
|
||||
assert_param(IS_FSMC_MEMORY_WIDTH(FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth));
|
||||
assert_param(IS_FSMC_BURSTMODE(FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode));
|
||||
assert_param(IS_FSMC_ASYNWAIT(FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait));
|
||||
assert_param(IS_FSMC_WAIT_POLARITY(FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity));
|
||||
assert_param(IS_FSMC_WRAP_MODE(FSMC_NORSRAMInitStruct->FSMC_WrapMode));
|
||||
assert_param(IS_FSMC_WAIT_SIGNAL_ACTIVE(FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive));
|
||||
assert_param(IS_FSMC_WRITE_OPERATION(FSMC_NORSRAMInitStruct->FSMC_WriteOperation));
|
||||
assert_param(IS_FSMC_WAITE_SIGNAL(FSMC_NORSRAMInitStruct->FSMC_WaitSignal));
|
||||
assert_param(IS_FSMC_EXTENDED_MODE(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode));
|
||||
assert_param(IS_FSMC_WRITE_BURST(FSMC_NORSRAMInitStruct->FSMC_WriteBurst));
|
||||
assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime));
|
||||
assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime));
|
||||
assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime));
|
||||
assert_param(IS_FSMC_TURNAROUND_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration));
|
||||
assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision));
|
||||
assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency));
|
||||
assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode));
|
||||
|
||||
/* Bank1 NOR/SRAM control register configuration */
|
||||
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] =
|
||||
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_DataAddressMux |
|
||||
FSMC_NORSRAMInitStruct->FSMC_MemoryType |
|
||||
FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth |
|
||||
FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode |
|
||||
FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait |
|
||||
FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity |
|
||||
FSMC_NORSRAMInitStruct->FSMC_WrapMode |
|
||||
FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive |
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteOperation |
|
||||
FSMC_NORSRAMInitStruct->FSMC_WaitSignal |
|
||||
FSMC_NORSRAMInitStruct->FSMC_ExtendedMode |
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteBurst;
|
||||
if(FSMC_NORSRAMInitStruct->FSMC_MemoryType == FSMC_MemoryType_NOR)
|
||||
{
|
||||
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] |= (uint32_t)BCR_FACCEN_SET;
|
||||
}
|
||||
/* Bank1 NOR/SRAM timing register configuration */
|
||||
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank+1] =
|
||||
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime << 4) |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime << 8) |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration << 16) |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision << 20) |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency << 24) |
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode;
|
||||
|
||||
|
||||
/* Bank1 NOR/SRAM timing register for write configuration, if extended mode is used */
|
||||
if(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode == FSMC_ExtendedMode_Enable)
|
||||
{
|
||||
assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime));
|
||||
assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime));
|
||||
assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime));
|
||||
assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision));
|
||||
assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency));
|
||||
assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode));
|
||||
FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] =
|
||||
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime << 4 )|
|
||||
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime << 8) |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision << 20) |
|
||||
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency << 24) |
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode;
|
||||
}
|
||||
else
|
||||
{
|
||||
FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] = 0x0FFFFFFF;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each FSMC_NORSRAMInitStruct member with its default value.
|
||||
* @param FSMC_NORSRAMInitStruct: pointer to a FSMC_NORSRAMInitTypeDef structure
|
||||
* which will be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NORSRAMStructInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
|
||||
{
|
||||
/* Reset NOR/SRAM Init structure parameters values */
|
||||
FSMC_NORSRAMInitStruct->FSMC_Bank = FSMC_Bank1_NORSRAM1;
|
||||
FSMC_NORSRAMInitStruct->FSMC_DataAddressMux = FSMC_DataAddressMux_Enable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_MemoryType = FSMC_MemoryType_SRAM;
|
||||
FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
|
||||
FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WrapMode = FSMC_WrapMode_Disable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteOperation = FSMC_WriteOperation_Enable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WaitSignal = FSMC_WaitSignal_Enable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteBurst = FSMC_WriteBurst_Disable;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime = 0xFF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime = 0xFF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency = 0xF;
|
||||
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified NOR/SRAM Memory Bank.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1
|
||||
* @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2
|
||||
* @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3
|
||||
* @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4
|
||||
* @param NewState: new state of the FSMC_Bank. This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NORSRAMCmd(uint32_t FSMC_Bank, FunctionalState NewState)
|
||||
{
|
||||
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected NOR/SRAM Bank by setting the PBKEN bit in the BCRx register */
|
||||
FSMC_Bank1->BTCR[FSMC_Bank] |= BCR_MBKEN_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected NOR/SRAM Bank by clearing the PBKEN bit in the BCRx register */
|
||||
FSMC_Bank1->BTCR[FSMC_Bank] &= BCR_MBKEN_RESET;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup FSMC_Group2 NAND Controller functions
|
||||
* @brief NAND Controller functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
NAND Controller functions
|
||||
===============================================================================
|
||||
|
||||
The following sequence should be followed to configure the FSMC to interface with
|
||||
8-bit or 16-bit NAND memory connected to the NAND Bank:
|
||||
|
||||
1. Enable the clock for the FSMC and associated GPIOs using the following functions:
|
||||
RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE);
|
||||
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
|
||||
|
||||
2. FSMC pins configuration
|
||||
- Connect the involved FSMC pins to AF12 using the following function
|
||||
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FSMC);
|
||||
- Configure these FSMC pins in alternate function mode by calling the function
|
||||
GPIO_Init();
|
||||
|
||||
3. Declare a FSMC_NANDInitTypeDef structure, for example:
|
||||
FSMC_NANDInitTypeDef FSMC_NANDInitStructure;
|
||||
and fill the FSMC_NANDInitStructure variable with the allowed values of
|
||||
the structure member.
|
||||
|
||||
4. Initialize the NAND Controller by calling the function
|
||||
FSMC_NANDInit(&FSMC_NANDInitStructure);
|
||||
|
||||
5. Then enable the NAND Bank, for example:
|
||||
FSMC_NANDCmd(FSMC_Bank3_NAND, ENABLE);
|
||||
|
||||
6. At this stage you can read/write from/to the memory connected to the NAND Bank.
|
||||
|
||||
@note To enable the Error Correction Code (ECC), you have to use the function
|
||||
FSMC_NANDECCCmd(FSMC_Bank3_NAND, ENABLE);
|
||||
and to get the current ECC value you have to use the function
|
||||
ECCval = FSMC_GetECC(FSMC_Bank3_NAND);
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the FSMC NAND Banks registers to their default reset values.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NANDDeInit(uint32_t FSMC_Bank)
|
||||
{
|
||||
/* Check the parameter */
|
||||
assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
|
||||
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
/* Set the FSMC_Bank2 registers to their reset values */
|
||||
FSMC_Bank2->PCR2 = 0x00000018;
|
||||
FSMC_Bank2->SR2 = 0x00000040;
|
||||
FSMC_Bank2->PMEM2 = 0xFCFCFCFC;
|
||||
FSMC_Bank2->PATT2 = 0xFCFCFCFC;
|
||||
}
|
||||
/* FSMC_Bank3_NAND */
|
||||
else
|
||||
{
|
||||
/* Set the FSMC_Bank3 registers to their reset values */
|
||||
FSMC_Bank3->PCR3 = 0x00000018;
|
||||
FSMC_Bank3->SR3 = 0x00000040;
|
||||
FSMC_Bank3->PMEM3 = 0xFCFCFCFC;
|
||||
FSMC_Bank3->PATT3 = 0xFCFCFCFC;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the FSMC NAND Banks according to the specified parameters
|
||||
* in the FSMC_NANDInitStruct.
|
||||
* @param FSMC_NANDInitStruct : pointer to a FSMC_NANDInitTypeDef structure that
|
||||
* contains the configuration information for the FSMC NAND specified Banks.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NANDInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct)
|
||||
{
|
||||
uint32_t tmppcr = 0x00000000, tmppmem = 0x00000000, tmppatt = 0x00000000;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param( IS_FSMC_NAND_BANK(FSMC_NANDInitStruct->FSMC_Bank));
|
||||
assert_param( IS_FSMC_WAIT_FEATURE(FSMC_NANDInitStruct->FSMC_Waitfeature));
|
||||
assert_param( IS_FSMC_MEMORY_WIDTH(FSMC_NANDInitStruct->FSMC_MemoryDataWidth));
|
||||
assert_param( IS_FSMC_ECC_STATE(FSMC_NANDInitStruct->FSMC_ECC));
|
||||
assert_param( IS_FSMC_ECCPAGE_SIZE(FSMC_NANDInitStruct->FSMC_ECCPageSize));
|
||||
assert_param( IS_FSMC_TCLR_TIME(FSMC_NANDInitStruct->FSMC_TCLRSetupTime));
|
||||
assert_param( IS_FSMC_TAR_TIME(FSMC_NANDInitStruct->FSMC_TARSetupTime));
|
||||
assert_param(IS_FSMC_SETUP_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime));
|
||||
assert_param(IS_FSMC_WAIT_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime));
|
||||
assert_param(IS_FSMC_HOLD_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime));
|
||||
assert_param(IS_FSMC_HIZ_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime));
|
||||
assert_param(IS_FSMC_SETUP_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime));
|
||||
assert_param(IS_FSMC_WAIT_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime));
|
||||
assert_param(IS_FSMC_HOLD_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime));
|
||||
assert_param(IS_FSMC_HIZ_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime));
|
||||
|
||||
/* Set the tmppcr value according to FSMC_NANDInitStruct parameters */
|
||||
tmppcr = (uint32_t)FSMC_NANDInitStruct->FSMC_Waitfeature |
|
||||
PCR_MEMORYTYPE_NAND |
|
||||
FSMC_NANDInitStruct->FSMC_MemoryDataWidth |
|
||||
FSMC_NANDInitStruct->FSMC_ECC |
|
||||
FSMC_NANDInitStruct->FSMC_ECCPageSize |
|
||||
(FSMC_NANDInitStruct->FSMC_TCLRSetupTime << 9 )|
|
||||
(FSMC_NANDInitStruct->FSMC_TARSetupTime << 13);
|
||||
|
||||
/* Set tmppmem value according to FSMC_CommonSpaceTimingStructure parameters */
|
||||
tmppmem = (uint32_t)FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime |
|
||||
(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
|
||||
(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
|
||||
(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime << 24);
|
||||
|
||||
/* Set tmppatt value according to FSMC_AttributeSpaceTimingStructure parameters */
|
||||
tmppatt = (uint32_t)FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime |
|
||||
(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
|
||||
(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
|
||||
(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime << 24);
|
||||
|
||||
if(FSMC_NANDInitStruct->FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
/* FSMC_Bank2_NAND registers configuration */
|
||||
FSMC_Bank2->PCR2 = tmppcr;
|
||||
FSMC_Bank2->PMEM2 = tmppmem;
|
||||
FSMC_Bank2->PATT2 = tmppatt;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* FSMC_Bank3_NAND registers configuration */
|
||||
FSMC_Bank3->PCR3 = tmppcr;
|
||||
FSMC_Bank3->PMEM3 = tmppmem;
|
||||
FSMC_Bank3->PATT3 = tmppatt;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fills each FSMC_NANDInitStruct member with its default value.
|
||||
* @param FSMC_NANDInitStruct: pointer to a FSMC_NANDInitTypeDef structure which
|
||||
* will be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NANDStructInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct)
|
||||
{
|
||||
/* Reset NAND Init structure parameters values */
|
||||
FSMC_NANDInitStruct->FSMC_Bank = FSMC_Bank2_NAND;
|
||||
FSMC_NANDInitStruct->FSMC_Waitfeature = FSMC_Waitfeature_Disable;
|
||||
FSMC_NANDInitStruct->FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
|
||||
FSMC_NANDInitStruct->FSMC_ECC = FSMC_ECC_Disable;
|
||||
FSMC_NANDInitStruct->FSMC_ECCPageSize = FSMC_ECCPageSize_256Bytes;
|
||||
FSMC_NANDInitStruct->FSMC_TCLRSetupTime = 0x0;
|
||||
FSMC_NANDInitStruct->FSMC_TARSetupTime = 0x0;
|
||||
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime = 0xFC;
|
||||
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
|
||||
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
|
||||
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
|
||||
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime = 0xFC;
|
||||
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
|
||||
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
|
||||
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified NAND Memory Bank.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @param NewState: new state of the FSMC_Bank. This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NANDCmd(uint32_t FSMC_Bank, FunctionalState NewState)
|
||||
{
|
||||
assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected NAND Bank by setting the PBKEN bit in the PCRx register */
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
FSMC_Bank2->PCR2 |= PCR_PBKEN_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
FSMC_Bank3->PCR3 |= PCR_PBKEN_SET;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected NAND Bank by clearing the PBKEN bit in the PCRx register */
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
FSMC_Bank2->PCR2 &= PCR_PBKEN_RESET;
|
||||
}
|
||||
else
|
||||
{
|
||||
FSMC_Bank3->PCR3 &= PCR_PBKEN_RESET;
|
||||
}
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @brief Enables or disables the FSMC NAND ECC feature.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @param NewState: new state of the FSMC NAND ECC feature.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_NANDECCCmd(uint32_t FSMC_Bank, FunctionalState NewState)
|
||||
{
|
||||
assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected NAND Bank ECC function by setting the ECCEN bit in the PCRx register */
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
FSMC_Bank2->PCR2 |= PCR_ECCEN_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
FSMC_Bank3->PCR3 |= PCR_ECCEN_SET;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected NAND Bank ECC function by clearing the ECCEN bit in the PCRx register */
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
FSMC_Bank2->PCR2 &= PCR_ECCEN_RESET;
|
||||
}
|
||||
else
|
||||
{
|
||||
FSMC_Bank3->PCR3 &= PCR_ECCEN_RESET;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the error correction code register value.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @retval The Error Correction Code (ECC) value.
|
||||
*/
|
||||
uint32_t FSMC_GetECC(uint32_t FSMC_Bank)
|
||||
{
|
||||
uint32_t eccval = 0x00000000;
|
||||
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
/* Get the ECCR2 register value */
|
||||
eccval = FSMC_Bank2->ECCR2;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Get the ECCR3 register value */
|
||||
eccval = FSMC_Bank3->ECCR3;
|
||||
}
|
||||
/* Return the error correction code value */
|
||||
return(eccval);
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup FSMC_Group3 PCCARD Controller functions
|
||||
* @brief PCCARD Controller functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
PCCARD Controller functions
|
||||
===============================================================================
|
||||
|
||||
The following sequence should be followed to configure the FSMC to interface with
|
||||
16-bit PC Card compatible memory connected to the PCCARD Bank:
|
||||
|
||||
1. Enable the clock for the FSMC and associated GPIOs using the following functions:
|
||||
RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE);
|
||||
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
|
||||
|
||||
2. FSMC pins configuration
|
||||
- Connect the involved FSMC pins to AF12 using the following function
|
||||
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FSMC);
|
||||
- Configure these FSMC pins in alternate function mode by calling the function
|
||||
GPIO_Init();
|
||||
|
||||
3. Declare a FSMC_PCCARDInitTypeDef structure, for example:
|
||||
FSMC_PCCARDInitTypeDef FSMC_PCCARDInitStructure;
|
||||
and fill the FSMC_PCCARDInitStructure variable with the allowed values of
|
||||
the structure member.
|
||||
|
||||
4. Initialize the PCCARD Controller by calling the function
|
||||
FSMC_PCCARDInit(&FSMC_PCCARDInitStructure);
|
||||
|
||||
5. Then enable the PCCARD Bank:
|
||||
FSMC_PCCARDCmd(ENABLE);
|
||||
|
||||
6. At this stage you can read/write from/to the memory connected to the PCCARD Bank.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the FSMC PCCARD Bank registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_PCCARDDeInit(void)
|
||||
{
|
||||
/* Set the FSMC_Bank4 registers to their reset values */
|
||||
FSMC_Bank4->PCR4 = 0x00000018;
|
||||
FSMC_Bank4->SR4 = 0x00000000;
|
||||
FSMC_Bank4->PMEM4 = 0xFCFCFCFC;
|
||||
FSMC_Bank4->PATT4 = 0xFCFCFCFC;
|
||||
FSMC_Bank4->PIO4 = 0xFCFCFCFC;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the FSMC PCCARD Bank according to the specified parameters
|
||||
* in the FSMC_PCCARDInitStruct.
|
||||
* @param FSMC_PCCARDInitStruct : pointer to a FSMC_PCCARDInitTypeDef structure
|
||||
* that contains the configuration information for the FSMC PCCARD Bank.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_PCCARDInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FSMC_WAIT_FEATURE(FSMC_PCCARDInitStruct->FSMC_Waitfeature));
|
||||
assert_param(IS_FSMC_TCLR_TIME(FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime));
|
||||
assert_param(IS_FSMC_TAR_TIME(FSMC_PCCARDInitStruct->FSMC_TARSetupTime));
|
||||
|
||||
assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime));
|
||||
assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime));
|
||||
assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime));
|
||||
assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime));
|
||||
|
||||
assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime));
|
||||
assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime));
|
||||
assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime));
|
||||
assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime));
|
||||
assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime));
|
||||
assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime));
|
||||
assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime));
|
||||
assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime));
|
||||
|
||||
/* Set the PCR4 register value according to FSMC_PCCARDInitStruct parameters */
|
||||
FSMC_Bank4->PCR4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_Waitfeature |
|
||||
FSMC_MemoryDataWidth_16b |
|
||||
(FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime << 9) |
|
||||
(FSMC_PCCARDInitStruct->FSMC_TARSetupTime << 13);
|
||||
|
||||
/* Set PMEM4 register value according to FSMC_CommonSpaceTimingStructure parameters */
|
||||
FSMC_Bank4->PMEM4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime |
|
||||
(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
|
||||
(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
|
||||
(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime << 24);
|
||||
|
||||
/* Set PATT4 register value according to FSMC_AttributeSpaceTimingStructure parameters */
|
||||
FSMC_Bank4->PATT4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime |
|
||||
(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
|
||||
(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
|
||||
(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime << 24);
|
||||
|
||||
/* Set PIO4 register value according to FSMC_IOSpaceTimingStructure parameters */
|
||||
FSMC_Bank4->PIO4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime |
|
||||
(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
|
||||
(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
|
||||
(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime << 24);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each FSMC_PCCARDInitStruct member with its default value.
|
||||
* @param FSMC_PCCARDInitStruct: pointer to a FSMC_PCCARDInitTypeDef structure
|
||||
* which will be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_PCCARDStructInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct)
|
||||
{
|
||||
/* Reset PCCARD Init structure parameters values */
|
||||
FSMC_PCCARDInitStruct->FSMC_Waitfeature = FSMC_Waitfeature_Disable;
|
||||
FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime = 0x0;
|
||||
FSMC_PCCARDInitStruct->FSMC_TARSetupTime = 0x0;
|
||||
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
|
||||
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the PCCARD Memory Bank.
|
||||
* @param NewState: new state of the PCCARD Memory Bank.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_PCCARDCmd(FunctionalState NewState)
|
||||
{
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the PCCARD Bank by setting the PBKEN bit in the PCR4 register */
|
||||
FSMC_Bank4->PCR4 |= PCR_PBKEN_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the PCCARD Bank by clearing the PBKEN bit in the PCR4 register */
|
||||
FSMC_Bank4->PCR4 &= PCR_PBKEN_RESET;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup FSMC_Group4 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified FSMC interrupts.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
|
||||
* @param FSMC_IT: specifies the FSMC interrupt sources to be enabled or disabled.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg FSMC_IT_RisingEdge: Rising edge detection interrupt.
|
||||
* @arg FSMC_IT_Level: Level edge detection interrupt.
|
||||
* @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
|
||||
* @param NewState: new state of the specified FSMC interrupts.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_ITConfig(uint32_t FSMC_Bank, uint32_t FSMC_IT, FunctionalState NewState)
|
||||
{
|
||||
assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
|
||||
assert_param(IS_FSMC_IT(FSMC_IT));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected FSMC_Bank2 interrupts */
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
FSMC_Bank2->SR2 |= FSMC_IT;
|
||||
}
|
||||
/* Enable the selected FSMC_Bank3 interrupts */
|
||||
else if (FSMC_Bank == FSMC_Bank3_NAND)
|
||||
{
|
||||
FSMC_Bank3->SR3 |= FSMC_IT;
|
||||
}
|
||||
/* Enable the selected FSMC_Bank4 interrupts */
|
||||
else
|
||||
{
|
||||
FSMC_Bank4->SR4 |= FSMC_IT;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected FSMC_Bank2 interrupts */
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
|
||||
FSMC_Bank2->SR2 &= (uint32_t)~FSMC_IT;
|
||||
}
|
||||
/* Disable the selected FSMC_Bank3 interrupts */
|
||||
else if (FSMC_Bank == FSMC_Bank3_NAND)
|
||||
{
|
||||
FSMC_Bank3->SR3 &= (uint32_t)~FSMC_IT;
|
||||
}
|
||||
/* Disable the selected FSMC_Bank4 interrupts */
|
||||
else
|
||||
{
|
||||
FSMC_Bank4->SR4 &= (uint32_t)~FSMC_IT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified FSMC flag is set or not.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
|
||||
* @param FSMC_FLAG: specifies the flag to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_FLAG_RisingEdge: Rising edge detection Flag.
|
||||
* @arg FSMC_FLAG_Level: Level detection Flag.
|
||||
* @arg FSMC_FLAG_FallingEdge: Falling edge detection Flag.
|
||||
* @arg FSMC_FLAG_FEMPT: Fifo empty Flag.
|
||||
* @retval The new state of FSMC_FLAG (SET or RESET).
|
||||
*/
|
||||
FlagStatus FSMC_GetFlagStatus(uint32_t FSMC_Bank, uint32_t FSMC_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
uint32_t tmpsr = 0x00000000;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FSMC_GETFLAG_BANK(FSMC_Bank));
|
||||
assert_param(IS_FSMC_GET_FLAG(FSMC_FLAG));
|
||||
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
tmpsr = FSMC_Bank2->SR2;
|
||||
}
|
||||
else if(FSMC_Bank == FSMC_Bank3_NAND)
|
||||
{
|
||||
tmpsr = FSMC_Bank3->SR3;
|
||||
}
|
||||
/* FSMC_Bank4_PCCARD*/
|
||||
else
|
||||
{
|
||||
tmpsr = FSMC_Bank4->SR4;
|
||||
}
|
||||
|
||||
/* Get the flag status */
|
||||
if ((tmpsr & FSMC_FLAG) != (uint16_t)RESET )
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the flag status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the FSMC's pending flags.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
|
||||
* @param FSMC_FLAG: specifies the flag to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg FSMC_FLAG_RisingEdge: Rising edge detection Flag.
|
||||
* @arg FSMC_FLAG_Level: Level detection Flag.
|
||||
* @arg FSMC_FLAG_FallingEdge: Falling edge detection Flag.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_ClearFlag(uint32_t FSMC_Bank, uint32_t FSMC_FLAG)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FSMC_GETFLAG_BANK(FSMC_Bank));
|
||||
assert_param(IS_FSMC_CLEAR_FLAG(FSMC_FLAG)) ;
|
||||
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
FSMC_Bank2->SR2 &= ~FSMC_FLAG;
|
||||
}
|
||||
else if(FSMC_Bank == FSMC_Bank3_NAND)
|
||||
{
|
||||
FSMC_Bank3->SR3 &= ~FSMC_FLAG;
|
||||
}
|
||||
/* FSMC_Bank4_PCCARD*/
|
||||
else
|
||||
{
|
||||
FSMC_Bank4->SR4 &= ~FSMC_FLAG;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified FSMC interrupt has occurred or not.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
|
||||
* @param FSMC_IT: specifies the FSMC interrupt source to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_IT_RisingEdge: Rising edge detection interrupt.
|
||||
* @arg FSMC_IT_Level: Level edge detection interrupt.
|
||||
* @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
|
||||
* @retval The new state of FSMC_IT (SET or RESET).
|
||||
*/
|
||||
ITStatus FSMC_GetITStatus(uint32_t FSMC_Bank, uint32_t FSMC_IT)
|
||||
{
|
||||
ITStatus bitstatus = RESET;
|
||||
uint32_t tmpsr = 0x0, itstatus = 0x0, itenable = 0x0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
|
||||
assert_param(IS_FSMC_GET_IT(FSMC_IT));
|
||||
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
tmpsr = FSMC_Bank2->SR2;
|
||||
}
|
||||
else if(FSMC_Bank == FSMC_Bank3_NAND)
|
||||
{
|
||||
tmpsr = FSMC_Bank3->SR3;
|
||||
}
|
||||
/* FSMC_Bank4_PCCARD*/
|
||||
else
|
||||
{
|
||||
tmpsr = FSMC_Bank4->SR4;
|
||||
}
|
||||
|
||||
itstatus = tmpsr & FSMC_IT;
|
||||
|
||||
itenable = tmpsr & (FSMC_IT >> 3);
|
||||
if ((itstatus != (uint32_t)RESET) && (itenable != (uint32_t)RESET))
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the FSMC's interrupt pending bits.
|
||||
* @param FSMC_Bank: specifies the FSMC Bank to be used
|
||||
* This parameter can be one of the following values:
|
||||
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
|
||||
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
|
||||
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
|
||||
* @param FSMC_IT: specifies the interrupt pending bit to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg FSMC_IT_RisingEdge: Rising edge detection interrupt.
|
||||
* @arg FSMC_IT_Level: Level edge detection interrupt.
|
||||
* @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
|
||||
* @retval None
|
||||
*/
|
||||
void FSMC_ClearITPendingBit(uint32_t FSMC_Bank, uint32_t FSMC_IT)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
|
||||
assert_param(IS_FSMC_IT(FSMC_IT));
|
||||
|
||||
if(FSMC_Bank == FSMC_Bank2_NAND)
|
||||
{
|
||||
FSMC_Bank2->SR2 &= ~(FSMC_IT >> 3);
|
||||
}
|
||||
else if(FSMC_Bank == FSMC_Bank3_NAND)
|
||||
{
|
||||
FSMC_Bank3->SR3 &= ~(FSMC_IT >> 3);
|
||||
}
|
||||
/* FSMC_Bank4_PCCARD*/
|
||||
else
|
||||
{
|
||||
FSMC_Bank4->SR4 &= ~(FSMC_IT >> 3);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
561
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_gpio.c
Executable file
561
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_gpio.c
Executable file
@@ -0,0 +1,561 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_gpio.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the GPIO peripheral:
|
||||
* - Initialization and Configuration
|
||||
* - GPIO Read and Write
|
||||
* - GPIO Alternate functions configuration
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable the GPIO AHB clock using the following function
|
||||
* RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
|
||||
*
|
||||
* 2. Configure the GPIO pin(s) using GPIO_Init()
|
||||
* Four possible configuration are available for each pin:
|
||||
* - Input: Floating, Pull-up, Pull-down.
|
||||
* - Output: Push-Pull (Pull-up, Pull-down or no Pull)
|
||||
* Open Drain (Pull-up, Pull-down or no Pull).
|
||||
* In output mode, the speed is configurable: 2 MHz, 25 MHz,
|
||||
* 50 MHz or 100 MHz.
|
||||
* - Alternate Function: Push-Pull (Pull-up, Pull-down or no Pull)
|
||||
* Open Drain (Pull-up, Pull-down or no Pull).
|
||||
* - Analog: required mode when a pin is to be used as ADC channel
|
||||
* or DAC output.
|
||||
*
|
||||
* 3- Peripherals alternate function:
|
||||
* - For ADC and DAC, configure the desired pin in analog mode using
|
||||
* GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AN;
|
||||
* - For other peripherals (TIM, USART...):
|
||||
* - Connect the pin to the desired peripherals' Alternate
|
||||
* Function (AF) using GPIO_PinAFConfig() function
|
||||
* - Configure the desired pin in alternate function mode using
|
||||
* GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF
|
||||
* - Select the type, pull-up/pull-down and output speed via
|
||||
* GPIO_PuPd, GPIO_OType and GPIO_Speed members
|
||||
* - Call GPIO_Init() function
|
||||
*
|
||||
* 4. To get the level of a pin configured in input mode use GPIO_ReadInputDataBit()
|
||||
*
|
||||
* 5. To set/reset the level of a pin configured in output mode use
|
||||
* GPIO_SetBits()/GPIO_ResetBits()
|
||||
*
|
||||
* 6. During and just after reset, the alternate functions are not
|
||||
* active and the GPIO pins are configured in input floating mode
|
||||
* (except JTAG pins).
|
||||
*
|
||||
* 7. The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as
|
||||
* general-purpose (PC14 and PC15, respectively) when the LSE
|
||||
* oscillator is off. The LSE has priority over the GPIO function.
|
||||
*
|
||||
* 8. The HSE oscillator pins OSC_IN/OSC_OUT can be used as
|
||||
* general-purpose PH0 and PH1, respectively, when the HSE
|
||||
* oscillator is off. The HSE has priority over the GPIO function.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_gpio.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup GPIO
|
||||
* @brief GPIO driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup GPIO_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup GPIO_Group1 Initialization and Configuration
|
||||
* @brief Initialization and Configuration
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Initialization and Configuration
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the GPIOx peripheral registers to their default reset values.
|
||||
* @note By default, The GPIO pins are configured in input floating mode (except JTAG pins).
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_DeInit(GPIO_TypeDef* GPIOx)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
|
||||
if (GPIOx == GPIOA)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOA, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOA, DISABLE);
|
||||
}
|
||||
else if (GPIOx == GPIOB)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOB, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOB, DISABLE);
|
||||
}
|
||||
else if (GPIOx == GPIOC)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOC, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOC, DISABLE);
|
||||
}
|
||||
else if (GPIOx == GPIOD)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOD, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOD, DISABLE);
|
||||
}
|
||||
else if (GPIOx == GPIOE)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOE, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOE, DISABLE);
|
||||
}
|
||||
else if (GPIOx == GPIOF)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOF, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOF, DISABLE);
|
||||
}
|
||||
else if (GPIOx == GPIOG)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOG, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOG, DISABLE);
|
||||
}
|
||||
else if (GPIOx == GPIOH)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOH, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOH, DISABLE);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (GPIOx == GPIOI)
|
||||
{
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOI, ENABLE);
|
||||
RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOI, DISABLE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_InitStruct.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure that contains
|
||||
* the configuration information for the specified GPIO peripheral.
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
|
||||
{
|
||||
uint32_t pinpos = 0x00, pos = 0x00 , currentpin = 0x00;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));
|
||||
assert_param(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));
|
||||
assert_param(IS_GPIO_PUPD(GPIO_InitStruct->GPIO_PuPd));
|
||||
|
||||
/* -------------------------Configure the port pins---------------- */
|
||||
/*-- GPIO Mode Configuration --*/
|
||||
for (pinpos = 0x00; pinpos < 0x10; pinpos++)
|
||||
{
|
||||
pos = ((uint32_t)0x01) << pinpos;
|
||||
/* Get the port pins position */
|
||||
currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;
|
||||
|
||||
if (currentpin == pos)
|
||||
{
|
||||
GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (pinpos * 2));
|
||||
GPIOx->MODER |= (((uint32_t)GPIO_InitStruct->GPIO_Mode) << (pinpos * 2));
|
||||
|
||||
if ((GPIO_InitStruct->GPIO_Mode == GPIO_Mode_OUT) || (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_AF))
|
||||
{
|
||||
/* Check Speed mode parameters */
|
||||
assert_param(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));
|
||||
|
||||
/* Speed mode configuration */
|
||||
GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (pinpos * 2));
|
||||
GPIOx->OSPEEDR |= ((uint32_t)(GPIO_InitStruct->GPIO_Speed) << (pinpos * 2));
|
||||
|
||||
/* Check Output mode parameters */
|
||||
assert_param(IS_GPIO_OTYPE(GPIO_InitStruct->GPIO_OType));
|
||||
|
||||
/* Output mode configuration*/
|
||||
GPIOx->OTYPER &= ~((GPIO_OTYPER_OT_0) << ((uint16_t)pinpos)) ;
|
||||
GPIOx->OTYPER |= (uint16_t)(((uint16_t)GPIO_InitStruct->GPIO_OType) << ((uint16_t)pinpos));
|
||||
}
|
||||
|
||||
/* Pull-up Pull down resistor configuration*/
|
||||
GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << ((uint16_t)pinpos * 2));
|
||||
GPIOx->PUPDR |= (((uint32_t)GPIO_InitStruct->GPIO_PuPd) << (pinpos * 2));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each GPIO_InitStruct member with its default value.
|
||||
* @param GPIO_InitStruct : pointer to a GPIO_InitTypeDef structure which will be initialized.
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_StructInit(GPIO_InitTypeDef* GPIO_InitStruct)
|
||||
{
|
||||
/* Reset GPIO init structure parameters values */
|
||||
GPIO_InitStruct->GPIO_Pin = GPIO_Pin_All;
|
||||
GPIO_InitStruct->GPIO_Mode = GPIO_Mode_IN;
|
||||
GPIO_InitStruct->GPIO_Speed = GPIO_Speed_2MHz;
|
||||
GPIO_InitStruct->GPIO_OType = GPIO_OType_PP;
|
||||
GPIO_InitStruct->GPIO_PuPd = GPIO_PuPd_NOPULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Locks GPIO Pins configuration registers.
|
||||
* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
|
||||
* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
|
||||
* @note The configuration of the locked GPIO pins can no longer be modified
|
||||
* until the next reset.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_Pin: specifies the port bit to be locked.
|
||||
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_PinLockConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
__IO uint32_t tmp = 0x00010000;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
tmp |= GPIO_Pin;
|
||||
/* Set LCKK bit */
|
||||
GPIOx->LCKR = tmp;
|
||||
/* Reset LCKK bit */
|
||||
GPIOx->LCKR = GPIO_Pin;
|
||||
/* Set LCKK bit */
|
||||
GPIOx->LCKR = tmp;
|
||||
/* Read LCKK bit*/
|
||||
tmp = GPIOx->LCKR;
|
||||
/* Read LCKK bit*/
|
||||
tmp = GPIOx->LCKR;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup GPIO_Group2 GPIO Read and Write
|
||||
* @brief GPIO Read and Write
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
GPIO Read and Write
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Reads the specified input port pin.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_Pin: specifies the port bit to read.
|
||||
* This parameter can be GPIO_Pin_x where x can be (0..15).
|
||||
* @retval The input port pin value.
|
||||
*/
|
||||
uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
uint8_t bitstatus = 0x00;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)Bit_RESET)
|
||||
{
|
||||
bitstatus = (uint8_t)Bit_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = (uint8_t)Bit_RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reads the specified GPIO input data port.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @retval GPIO input data port value.
|
||||
*/
|
||||
uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
|
||||
return ((uint16_t)GPIOx->IDR);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reads the specified output data port bit.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_Pin: specifies the port bit to read.
|
||||
* This parameter can be GPIO_Pin_x where x can be (0..15).
|
||||
* @retval The output port pin value.
|
||||
*/
|
||||
uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
uint8_t bitstatus = 0x00;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
if ((GPIOx->ODR & GPIO_Pin) != (uint32_t)Bit_RESET)
|
||||
{
|
||||
bitstatus = (uint8_t)Bit_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = (uint8_t)Bit_RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reads the specified GPIO output data port.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @retval GPIO output data port value.
|
||||
*/
|
||||
uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
|
||||
return ((uint16_t)GPIOx->ODR);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets the selected data port bits.
|
||||
* @note This functions uses GPIOx_BSRR register to allow atomic read/modify
|
||||
* accesses. In this way, there is no risk of an IRQ occurring between
|
||||
* the read and the modify access.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_Pin: specifies the port bits to be written.
|
||||
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
GPIOx->BSRRL = GPIO_Pin;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the selected data port bits.
|
||||
* @note This functions uses GPIOx_BSRR register to allow atomic read/modify
|
||||
* accesses. In this way, there is no risk of an IRQ occurring between
|
||||
* the read and the modify access.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_Pin: specifies the port bits to be written.
|
||||
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
GPIOx->BSRRH = GPIO_Pin;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets or clears the selected data port bit.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_Pin: specifies the port bit to be written.
|
||||
* This parameter can be one of GPIO_Pin_x where x can be (0..15).
|
||||
* @param BitVal: specifies the value to be written to the selected bit.
|
||||
* This parameter can be one of the BitAction enum values:
|
||||
* @arg Bit_RESET: to clear the port pin
|
||||
* @arg Bit_SET: to set the port pin
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
|
||||
assert_param(IS_GPIO_BIT_ACTION(BitVal));
|
||||
|
||||
if (BitVal != Bit_RESET)
|
||||
{
|
||||
GPIOx->BSRRL = GPIO_Pin;
|
||||
}
|
||||
else
|
||||
{
|
||||
GPIOx->BSRRH = GPIO_Pin ;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Writes data to the specified GPIO data port.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param PortVal: specifies the value to be written to the port output data register.
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
|
||||
GPIOx->ODR = PortVal;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Toggles the specified GPIO pins..
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_Pin: Specifies the pins to be toggled.
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_ToggleBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
|
||||
GPIOx->ODR ^= GPIO_Pin;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup GPIO_Group3 GPIO Alternate functions configuration function
|
||||
* @brief GPIO Alternate functions configuration function
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
GPIO Alternate functions configuration function
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Changes the mapping of the specified pin.
|
||||
* @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
|
||||
* @param GPIO_PinSource: specifies the pin for the Alternate function.
|
||||
* This parameter can be GPIO_PinSourcex where x can be (0..15).
|
||||
* @param GPIO_AFSelection: selects the pin to used as Alternate function.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg GPIO_AF_RTC_50Hz: Connect RTC_50Hz pin to AF0 (default after reset)
|
||||
* @arg GPIO_AF_MCO: Connect MCO pin (MCO1 and MCO2) to AF0 (default after reset)
|
||||
* @arg GPIO_AF_TAMPER: Connect TAMPER pins (TAMPER_1 and TAMPER_2) to AF0 (default after reset)
|
||||
* @arg GPIO_AF_SWJ: Connect SWJ pins (SWD and JTAG)to AF0 (default after reset)
|
||||
* @arg GPIO_AF_TRACE: Connect TRACE pins to AF0 (default after reset)
|
||||
* @arg GPIO_AF_TIM1: Connect TIM1 pins to AF1
|
||||
* @arg GPIO_AF_TIM2: Connect TIM2 pins to AF1
|
||||
* @arg GPIO_AF_TIM3: Connect TIM3 pins to AF2
|
||||
* @arg GPIO_AF_TIM4: Connect TIM4 pins to AF2
|
||||
* @arg GPIO_AF_TIM5: Connect TIM5 pins to AF2
|
||||
* @arg GPIO_AF_TIM8: Connect TIM8 pins to AF3
|
||||
* @arg GPIO_AF_TIM9: Connect TIM9 pins to AF3
|
||||
* @arg GPIO_AF_TIM10: Connect TIM10 pins to AF3
|
||||
* @arg GPIO_AF_TIM11: Connect TIM11 pins to AF3
|
||||
* @arg GPIO_AF_I2C1: Connect I2C1 pins to AF4
|
||||
* @arg GPIO_AF_I2C2: Connect I2C2 pins to AF4
|
||||
* @arg GPIO_AF_I2C3: Connect I2C3 pins to AF4
|
||||
* @arg GPIO_AF_SPI1: Connect SPI1 pins to AF5
|
||||
* @arg GPIO_AF_SPI2: Connect SPI2/I2S2 pins to AF5
|
||||
* @arg GPIO_AF_SPI3: Connect SPI3/I2S3 pins to AF6
|
||||
* @arg GPIO_AF_I2S3ext: Connect I2S3ext pins to AF7
|
||||
* @arg GPIO_AF_USART1: Connect USART1 pins to AF7
|
||||
* @arg GPIO_AF_USART2: Connect USART2 pins to AF7
|
||||
* @arg GPIO_AF_USART3: Connect USART3 pins to AF7
|
||||
* @arg GPIO_AF_UART4: Connect UART4 pins to AF8
|
||||
* @arg GPIO_AF_UART5: Connect UART5 pins to AF8
|
||||
* @arg GPIO_AF_USART6: Connect USART6 pins to AF8
|
||||
* @arg GPIO_AF_CAN1: Connect CAN1 pins to AF9
|
||||
* @arg GPIO_AF_CAN2: Connect CAN2 pins to AF9
|
||||
* @arg GPIO_AF_TIM12: Connect TIM12 pins to AF9
|
||||
* @arg GPIO_AF_TIM13: Connect TIM13 pins to AF9
|
||||
* @arg GPIO_AF_TIM14: Connect TIM14 pins to AF9
|
||||
* @arg GPIO_AF_OTG_FS: Connect OTG_FS pins to AF10
|
||||
* @arg GPIO_AF_OTG_HS: Connect OTG_HS pins to AF10
|
||||
* @arg GPIO_AF_ETH: Connect ETHERNET pins to AF11
|
||||
* @arg GPIO_AF_FSMC: Connect FSMC pins to AF12
|
||||
* @arg GPIO_AF_OTG_HS_FS: Connect OTG HS (configured in FS) pins to AF12
|
||||
* @arg GPIO_AF_SDIO: Connect SDIO pins to AF12
|
||||
* @arg GPIO_AF_DCMI: Connect DCMI pins to AF13
|
||||
* @arg GPIO_AF_EVENTOUT: Connect EVENTOUT pins to AF15
|
||||
* @retval None
|
||||
*/
|
||||
void GPIO_PinAFConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_PinSource, uint8_t GPIO_AF)
|
||||
{
|
||||
uint32_t temp = 0x00;
|
||||
uint32_t temp_2 = 0x00;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
|
||||
assert_param(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
|
||||
assert_param(IS_GPIO_AF(GPIO_AF));
|
||||
|
||||
temp = ((uint32_t)(GPIO_AF) << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4)) ;
|
||||
GPIOx->AFR[GPIO_PinSource >> 0x03] &= ~((uint32_t)0xF << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4)) ;
|
||||
temp_2 = GPIOx->AFR[GPIO_PinSource >> 0x03] | temp;
|
||||
GPIOx->AFR[GPIO_PinSource >> 0x03] = temp_2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
700
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_hash.c
Executable file
700
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_hash.c
Executable file
@@ -0,0 +1,700 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_hash.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the HASH / HMAC Processor (HASH) peripheral:
|
||||
* - Initialization and Configuration functions
|
||||
* - Message Digest generation functions
|
||||
* - context swapping functions
|
||||
* - DMA interface function
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* HASH operation :
|
||||
* ----------------
|
||||
* 1. Enable the HASH controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_HASH, ENABLE) function.
|
||||
*
|
||||
* 2. Initialise the HASH using HASH_Init() function.
|
||||
*
|
||||
* 3 . Reset the HASH processor core, so that the HASH will be ready
|
||||
* to compute he message digest of a new message by using
|
||||
* HASH_Reset() function.
|
||||
*
|
||||
* 4. Enable the HASH controller using the HASH_Cmd() function.
|
||||
*
|
||||
* 5. if using DMA for Data input transfer, Activate the DMA Request
|
||||
* using HASH_DMACmd() function
|
||||
*
|
||||
* 6. if DMA is not used for data transfer, use HASH_DataIn() function
|
||||
* to enter data to IN FIFO.
|
||||
*
|
||||
*
|
||||
* 7. Configure the Number of valid bits in last word of the message
|
||||
* using HASH_SetLastWordValidBitsNbr() function.
|
||||
*
|
||||
* 8. if the message length is not an exact multiple of 512 bits,
|
||||
* then the function HASH_StartDigest() must be called to
|
||||
* launch the computation of the final digest.
|
||||
*
|
||||
* 9. Once computed, the digest can be read using HASH_GetDigest()
|
||||
* function.
|
||||
*
|
||||
* 10. To control HASH events you can use one of the following
|
||||
* two methods:
|
||||
* a- Check on HASH flags using the HASH_GetFlagStatus() function.
|
||||
* b- Use HASH interrupts through the function HASH_ITConfig() at
|
||||
* initialization phase and HASH_GetITStatus() function into
|
||||
* interrupt routines in hashing phase.
|
||||
* After checking on a flag you should clear it using HASH_ClearFlag()
|
||||
* function. And after checking on an interrupt event you should
|
||||
* clear it using HASH_ClearITPendingBit() function.
|
||||
*
|
||||
* 11. Save and restore hash processor context using
|
||||
* HASH_SaveContext() and HASH_RestoreContext() functions.
|
||||
*
|
||||
*
|
||||
*
|
||||
* HMAC operation :
|
||||
* ----------------
|
||||
* The HMAC algorithm is used for message authentication, by
|
||||
* irreversibly binding the message being processed to a key chosen
|
||||
* by the user.
|
||||
* For HMAC specifications, refer to "HMAC: keyed-hashing for message
|
||||
* authentication, H. Krawczyk, M. Bellare, R. Canetti, February 1997"
|
||||
*
|
||||
* Basically, the HMAC algorithm consists of two nested hash operations:
|
||||
* HMAC(message) = Hash[((key | pad) XOR 0x5C) | Hash(((key | pad) XOR 0x36) | message)]
|
||||
* where:
|
||||
* - "pad" is a sequence of zeroes needed to extend the key to the
|
||||
* length of the underlying hash function data block (that is
|
||||
* 512 bits for both the SHA-1 and MD5 hash algorithms)
|
||||
* - "|" represents the concatenation operator
|
||||
*
|
||||
*
|
||||
* To compute the HMAC, four different phases are required:
|
||||
*
|
||||
* 1. Initialise the HASH using HASH_Init() function to do HMAC
|
||||
* operation.
|
||||
*
|
||||
* 2. The key (to be used for the inner hash function) is then given
|
||||
* to the core. This operation follows the same mechanism as the
|
||||
* one used to send the message in the hash operation (that is,
|
||||
* by HASH_DataIn() function and, finally,
|
||||
* HASH_StartDigest() function.
|
||||
*
|
||||
* 3. Once the last word has been entered and computation has started,
|
||||
* the hash processor elaborates the key. It is then ready to
|
||||
* accept the message text using the same mechanism as the one
|
||||
* used to send the message in the hash operation.
|
||||
*
|
||||
* 4. After the first hash round, the hash processor returns "ready"
|
||||
* to indicate that it is ready to receive the key to be used for
|
||||
* the outer hash function (normally, this key is the same as the
|
||||
* one used for the inner hash function). When the last word of
|
||||
* the key is entered and computation starts, the HMAC result is
|
||||
* made available using HASH_GetDigest() function.
|
||||
*
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_hash.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HASH
|
||||
* @brief HASH driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup HASH_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HASH_Group1 Initialization and Configuration functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Initialization and Configuration functions
|
||||
===============================================================================
|
||||
This section provides functions allowing to
|
||||
- Initialize the HASH peripheral
|
||||
- Configure the HASH Processor
|
||||
- MD5/SHA1,
|
||||
- HASH/HMAC,
|
||||
- datatype
|
||||
- HMAC Key (if mode = HMAC)
|
||||
- Reset the HASH Processor
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the HASH peripheral registers to their default reset values
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_DeInit(void)
|
||||
{
|
||||
/* Enable HASH reset state */
|
||||
RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_HASH, ENABLE);
|
||||
/* Release HASH from reset state */
|
||||
RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_HASH, DISABLE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the HASH peripheral according to the specified parameters
|
||||
* in the HASH_InitStruct structure.
|
||||
* @note the hash processor is reset when calling this function so that the
|
||||
* HASH will be ready to compute the message digest of a new message.
|
||||
* There is no need to call HASH_Reset() function.
|
||||
* @param HASH_InitStruct: pointer to a HASH_InitTypeDef structure that contains
|
||||
* the configuration information for the HASH peripheral.
|
||||
* @note The field HASH_HMACKeyType in HASH_InitTypeDef must be filled only
|
||||
* if the algorithm mode is HMAC.
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_Init(HASH_InitTypeDef* HASH_InitStruct)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_HASH_ALGOSELECTION(HASH_InitStruct->HASH_AlgoSelection));
|
||||
assert_param(IS_HASH_DATATYPE(HASH_InitStruct->HASH_DataType));
|
||||
assert_param(IS_HASH_ALGOMODE(HASH_InitStruct->HASH_AlgoMode));
|
||||
|
||||
/* Configure the Algorithm used, algorithm mode and the datatype */
|
||||
HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
|
||||
HASH->CR |= (HASH_InitStruct->HASH_AlgoSelection | \
|
||||
HASH_InitStruct->HASH_DataType | \
|
||||
HASH_InitStruct->HASH_AlgoMode);
|
||||
|
||||
/* if algorithm mode is HMAC, set the Key */
|
||||
if(HASH_InitStruct->HASH_AlgoMode == HASH_AlgoMode_HMAC)
|
||||
{
|
||||
assert_param(IS_HASH_HMAC_KEYTYPE(HASH_InitStruct->HASH_HMACKeyType));
|
||||
HASH->CR &= ~HASH_CR_LKEY;
|
||||
HASH->CR |= HASH_InitStruct->HASH_HMACKeyType;
|
||||
}
|
||||
|
||||
/* Reset the HASH processor core, so that the HASH will be ready to compute
|
||||
the message digest of a new message */
|
||||
HASH->CR |= HASH_CR_INIT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fills each HASH_InitStruct member with its default value.
|
||||
* @param HASH_InitStruct : pointer to a HASH_InitTypeDef structure which will
|
||||
* be initialized.
|
||||
* @note The default values set are : Processor mode is HASH, Algorithm selected is SHA1,
|
||||
* Data type selected is 32b and HMAC Key Type is short key.
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_StructInit(HASH_InitTypeDef* HASH_InitStruct)
|
||||
{
|
||||
/* Initialize the HASH_AlgoSelection member */
|
||||
HASH_InitStruct->HASH_AlgoSelection = HASH_AlgoSelection_SHA1;
|
||||
|
||||
/* Initialize the HASH_AlgoMode member */
|
||||
HASH_InitStruct->HASH_AlgoMode = HASH_AlgoMode_HASH;
|
||||
|
||||
/* Initialize the HASH_DataType member */
|
||||
HASH_InitStruct->HASH_DataType = HASH_DataType_32b;
|
||||
|
||||
/* Initialize the HASH_HMACKeyType member */
|
||||
HASH_InitStruct->HASH_HMACKeyType = HASH_HMACKeyType_ShortKey;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resets the HASH processor core, so that the HASH will be ready
|
||||
* to compute the message digest of a new message.
|
||||
* @note Calling this function will clear the HASH_SR_DCIS (Digest calculation
|
||||
* completion interrupt status) bit corresponding to HASH_IT_DCI
|
||||
* interrupt and HASH_FLAG_DCIS flag.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_Reset(void)
|
||||
{
|
||||
/* Reset the HASH processor core */
|
||||
HASH->CR |= HASH_CR_INIT;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup HASH_Group2 Message Digest generation functions
|
||||
* @brief Message Digest generation functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Message Digest generation functions
|
||||
===============================================================================
|
||||
This section provides functions allowing the generation of message digest:
|
||||
- Push data in the IN FIFO : using HASH_DataIn()
|
||||
- Get the number of words set in IN FIFO, use HASH_GetInFIFOWordsNbr()
|
||||
- set the last word valid bits number using HASH_SetLastWordValidBitsNbr()
|
||||
- start digest calculation : using HASH_StartDigest()
|
||||
- Get the Digest message : using HASH_GetDigest()
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Configure the Number of valid bits in last word of the message
|
||||
* @param ValidNumber: Number of valid bits in last word of the message.
|
||||
* This parameter must be a number between 0 and 0x1F.
|
||||
* - 0x00: All 32 bits of the last data written are valid
|
||||
* - 0x01: Only bit [0] of the last data written is valid
|
||||
* - 0x02: Only bits[1:0] of the last data written are valid
|
||||
* - 0x03: Only bits[2:0] of the last data written are valid
|
||||
* - ...
|
||||
* - 0x1F: Only bits[30:0] of the last data written are valid
|
||||
* @note The Number of valid bits must be set before to start the message
|
||||
* digest competition (in Hash and HMAC) and key treatment(in HMAC).
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_SetLastWordValidBitsNbr(uint16_t ValidNumber)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_HASH_VALIDBITSNUMBER(ValidNumber));
|
||||
|
||||
/* Configure the Number of valid bits in last word of the message */
|
||||
HASH->STR &= ~(HASH_STR_NBW);
|
||||
HASH->STR |= ValidNumber;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Writes data in the Data Input FIFO
|
||||
* @param Data: new data of the message to be processed.
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_DataIn(uint32_t Data)
|
||||
{
|
||||
/* Write in the DIN register a new data */
|
||||
HASH->DIN = Data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the number of words already pushed into the IN FIFO.
|
||||
* @param None
|
||||
* @retval The value of words already pushed into the IN FIFO.
|
||||
*/
|
||||
uint8_t HASH_GetInFIFOWordsNbr(void)
|
||||
{
|
||||
/* Return the value of NBW bits */
|
||||
return ((HASH->CR & HASH_CR_NBW) >> 8);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Provides the message digest result.
|
||||
* @note In MD5 mode, Data[4] filed of HASH_MsgDigest structure is not used
|
||||
* and is read as zero.
|
||||
* @param HASH_MessageDigest: pointer to a HASH_MsgDigest structure which will
|
||||
* hold the message digest result
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_GetDigest(HASH_MsgDigest* HASH_MessageDigest)
|
||||
{
|
||||
/* Get the data field */
|
||||
HASH_MessageDigest->Data[0] = HASH->HR[0];
|
||||
HASH_MessageDigest->Data[1] = HASH->HR[1];
|
||||
HASH_MessageDigest->Data[2] = HASH->HR[2];
|
||||
HASH_MessageDigest->Data[3] = HASH->HR[3];
|
||||
HASH_MessageDigest->Data[4] = HASH->HR[4];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Starts the message padding and calculation of the final message
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_StartDigest(void)
|
||||
{
|
||||
/* Start the Digest calculation */
|
||||
HASH->STR |= HASH_STR_DCAL;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup HASH_Group3 Context swapping functions
|
||||
* @brief Context swapping functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Context swapping functions
|
||||
===============================================================================
|
||||
|
||||
This section provides functions allowing to save and store HASH Context
|
||||
|
||||
It is possible to interrupt a HASH/HMAC process to perform another processing
|
||||
with a higher priority, and to complete the interrupted process later on, when
|
||||
the higher priority task is complete. To do so, the context of the interrupted
|
||||
task must be saved from the HASH registers to memory, and then be restored
|
||||
from memory to the HASH registers.
|
||||
|
||||
1. To save the current context, use HASH_SaveContext() function
|
||||
2. To restore the saved context, use HASH_RestoreContext() function
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Save the Hash peripheral Context.
|
||||
* @note The context can be saved only when no block is currently being
|
||||
* processed. So user must wait for DINIS = 1 (the last block has been
|
||||
* processed and the input FIFO is empty) or NBW != 0 (the FIFO is not
|
||||
* full and no processing is ongoing).
|
||||
* @param HASH_ContextSave: pointer to a HASH_Context structure that contains
|
||||
* the repository for current context.
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_SaveContext(HASH_Context* HASH_ContextSave)
|
||||
{
|
||||
uint8_t i = 0;
|
||||
|
||||
/* save context registers */
|
||||
HASH_ContextSave->HASH_IMR = HASH->IMR;
|
||||
HASH_ContextSave->HASH_STR = HASH->STR;
|
||||
HASH_ContextSave->HASH_CR = HASH->CR;
|
||||
for(i=0; i<=50;i++)
|
||||
{
|
||||
HASH_ContextSave->HASH_CSR[i] = HASH->CSR[i];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Restore the Hash peripheral Context.
|
||||
* @note After calling this function, user can restart the processing from the
|
||||
* point where it has been interrupted.
|
||||
* @param HASH_ContextRestore: pointer to a HASH_Context structure that contains
|
||||
* the repository for saved context.
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_RestoreContext(HASH_Context* HASH_ContextRestore)
|
||||
{
|
||||
uint8_t i = 0;
|
||||
|
||||
/* restore context registers */
|
||||
HASH->IMR = HASH_ContextRestore->HASH_IMR;
|
||||
HASH->STR = HASH_ContextRestore->HASH_STR;
|
||||
HASH->CR = HASH_ContextRestore->HASH_CR;
|
||||
|
||||
/* Initialize the hash processor */
|
||||
HASH->CR |= HASH_CR_INIT;
|
||||
|
||||
/* continue restoring context registers */
|
||||
for(i=0; i<=50;i++)
|
||||
{
|
||||
HASH->CSR[i] = HASH_ContextRestore->HASH_CSR[i];
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup HASH_Group4 HASH's DMA interface Configuration function
|
||||
* @brief HASH's DMA interface Configuration function
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
HASH's DMA interface Configuration function
|
||||
===============================================================================
|
||||
|
||||
This section provides functions allowing to configure the DMA interface for
|
||||
HASH/ HMAC data input transfer.
|
||||
|
||||
When the DMA mode is enabled (using the HASH_DMACmd() function), data can be
|
||||
sent to the IN FIFO using the DMA peripheral.
|
||||
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the HASH DMA interface.
|
||||
* @note The DMA is disabled by hardware after the end of transfer.
|
||||
* @param NewState: new state of the selected HASH DMA transfer request.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_DMACmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the HASH DMA request */
|
||||
HASH->CR |= HASH_CR_DMAE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the HASH DMA request */
|
||||
HASH->CR &= ~HASH_CR_DMAE;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup HASH_Group5 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
This section provides functions allowing to configure the HASH Interrupts and
|
||||
to get the status and clear flags and Interrupts pending bits.
|
||||
|
||||
The HASH provides 2 Interrupts sources and 5 Flags:
|
||||
|
||||
Flags :
|
||||
----------
|
||||
1. HASH_FLAG_DINIS : set when 16 locations are free in the Data IN FIFO
|
||||
which means that a new block (512 bit) can be entered
|
||||
into the input buffer.
|
||||
|
||||
2. HASH_FLAG_DCIS : set when Digest calculation is complete
|
||||
|
||||
3. HASH_FLAG_DMAS : set when HASH's DMA interface is enabled (DMAE=1) or
|
||||
a transfer is ongoing.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
4. HASH_FLAG_BUSY : set when The hash core is processing a block of data
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
5. HASH_FLAG_DINNE : set when Data IN FIFO is not empty which means that
|
||||
the Data IN FIFO contains at least one word of data.
|
||||
This Flag is cleared only by hardware.
|
||||
|
||||
Interrupts :
|
||||
------------
|
||||
|
||||
1. HASH_IT_DINI : if enabled, this interrupt source is pending when 16
|
||||
locations are free in the Data IN FIFO which means that
|
||||
a new block (512 bit) can be entered into the input buffer.
|
||||
This interrupt source is cleared using
|
||||
HASH_ClearITPendingBit(HASH_IT_DINI) function.
|
||||
|
||||
2. HASH_IT_DCI : if enabled, this interrupt source is pending when Digest
|
||||
calculation is complete.
|
||||
This interrupt source is cleared using
|
||||
HASH_ClearITPendingBit(HASH_IT_DCI) function.
|
||||
|
||||
Managing the HASH controller events :
|
||||
------------------------------------
|
||||
The user should identify which mode will be used in his application to manage
|
||||
the HASH controller events: Polling mode or Interrupt mode.
|
||||
|
||||
1. In the Polling Mode it is advised to use the following functions:
|
||||
- HASH_GetFlagStatus() : to check if flags events occur.
|
||||
- HASH_ClearFlag() : to clear the flags events.
|
||||
|
||||
2. In the Interrupt Mode it is advised to use the following functions:
|
||||
- HASH_ITConfig() : to enable or disable the interrupt source.
|
||||
- HASH_GetITStatus() : to check if Interrupt occurs.
|
||||
- HASH_ClearITPendingBit() : to clear the Interrupt pending Bit
|
||||
(corresponding Flag).
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the specified HASH interrupts.
|
||||
* @param HASH_IT: specifies the HASH interrupt source to be enabled or disabled.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg HASH_IT_DINI: Data Input interrupt
|
||||
* @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
|
||||
* @param NewState: new state of the specified HASH interrupt.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_ITConfig(uint8_t HASH_IT, FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_HASH_IT(HASH_IT));
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the selected HASH interrupt */
|
||||
HASH->IMR |= HASH_IT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the selected HASH interrupt */
|
||||
HASH->IMR &= (uint8_t) ~HASH_IT;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified HASH flag is set or not.
|
||||
* @param HASH_FLAG: specifies the HASH flag to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg HASH_FLAG_DINIS: Data input interrupt status flag
|
||||
* @arg HASH_FLAG_DCIS: Digest calculation completion interrupt status flag
|
||||
* @arg HASH_FLAG_BUSY: Busy flag
|
||||
* @arg HASH_FLAG_DMAS: DMAS Status flag
|
||||
* @arg HASH_FLAG_DINNE: Data Input register (DIN) not empty status flag
|
||||
* @retval The new state of HASH_FLAG (SET or RESET)
|
||||
*/
|
||||
FlagStatus HASH_GetFlagStatus(uint16_t HASH_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
uint32_t tempreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_HASH_GET_FLAG(HASH_FLAG));
|
||||
|
||||
/* check if the FLAG is in CR register */
|
||||
if ((HASH_FLAG & HASH_FLAG_DINNE) != (uint16_t)RESET )
|
||||
{
|
||||
tempreg = HASH->CR;
|
||||
}
|
||||
else /* The FLAG is in SR register */
|
||||
{
|
||||
tempreg = HASH->SR;
|
||||
}
|
||||
|
||||
/* Check the status of the specified HASH flag */
|
||||
if ((tempreg & HASH_FLAG) != (uint16_t)RESET)
|
||||
{
|
||||
/* HASH is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* HASH_FLAG is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
|
||||
/* Return the HASH_FLAG status */
|
||||
return bitstatus;
|
||||
}
|
||||
/**
|
||||
* @brief Clears the HASH flags.
|
||||
* @param HASH_FLAG: specifies the flag to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg HASH_FLAG_DINIS: Data Input Flag
|
||||
* @arg HASH_FLAG_DCIS: Digest Calculation Completion Flag
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_ClearFlag(uint16_t HASH_FLAG)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_HASH_CLEAR_FLAG(HASH_FLAG));
|
||||
|
||||
/* Clear the selected HASH flags */
|
||||
HASH->SR = ~(uint32_t)HASH_FLAG;
|
||||
}
|
||||
/**
|
||||
* @brief Checks whether the specified HASH interrupt has occurred or not.
|
||||
* @param HASH_IT: specifies the HASH interrupt source to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg HASH_IT_DINI: Data Input interrupt
|
||||
* @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
|
||||
* @retval The new state of HASH_IT (SET or RESET).
|
||||
*/
|
||||
ITStatus HASH_GetITStatus(uint8_t HASH_IT)
|
||||
{
|
||||
ITStatus bitstatus = RESET;
|
||||
uint32_t tmpreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_HASH_GET_IT(HASH_IT));
|
||||
|
||||
|
||||
/* Check the status of the specified HASH interrupt */
|
||||
tmpreg = HASH->SR;
|
||||
|
||||
if (((HASH->IMR & tmpreg) & HASH_IT) != RESET)
|
||||
{
|
||||
/* HASH_IT is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* HASH_IT is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the HASH_IT status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the HASH interrupt pending bit(s).
|
||||
* @param HASH_IT: specifies the HASH interrupt pending bit(s) to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg HASH_IT_DINI: Data Input interrupt
|
||||
* @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
|
||||
* @retval None
|
||||
*/
|
||||
void HASH_ClearITPendingBit(uint8_t HASH_IT)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_HASH_IT(HASH_IT));
|
||||
|
||||
/* Clear the selected HASH interrupt pending bit */
|
||||
HASH->SR = (uint8_t)~HASH_IT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
314
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_hash_md5.c
Executable file
314
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_hash_md5.c
Executable file
@@ -0,0 +1,314 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_hash_md5.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides high level functions to compute the HASH MD5 and
|
||||
* HMAC MD5 Digest of an input message.
|
||||
* It uses the stm32f4xx_hash.c/.h drivers to access the STM32F4xx HASH
|
||||
* peripheral.
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable The HASH controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_HASH, ENABLE); function.
|
||||
*
|
||||
* 2. Calculate the HASH MD5 Digest using HASH_MD5() function.
|
||||
*
|
||||
* 3. Calculate the HMAC MD5 Digest using HMAC_MD5() function.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_hash.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HASH
|
||||
* @brief HASH driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define MD5BUSY_TIMEOUT ((uint32_t) 0x00010000)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup HASH_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HASH_Group7 High Level MD5 functions
|
||||
* @brief High Level MD5 Hash and HMAC functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
High Level MD5 Hash and HMAC functions
|
||||
===============================================================================
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Compute the HASH MD5 digest.
|
||||
* @param Input: pointer to the Input buffer to be treated.
|
||||
* @param Ilen: length of the Input buffer.
|
||||
* @param Output: the returned digest
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: digest computation done
|
||||
* - ERROR: digest computation failed
|
||||
*/
|
||||
ErrorStatus HASH_MD5(uint8_t *Input, uint32_t Ilen, uint8_t Output[16])
|
||||
{
|
||||
HASH_InitTypeDef MD5_HASH_InitStructure;
|
||||
HASH_MsgDigest MD5_MessageDigest;
|
||||
__IO uint16_t nbvalidbitsdata = 0;
|
||||
uint32_t i = 0;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
|
||||
|
||||
/* Number of valid bits in last word of the Input data */
|
||||
nbvalidbitsdata = 8 * (Ilen % 4);
|
||||
|
||||
/* HASH peripheral initialization */
|
||||
HASH_DeInit();
|
||||
|
||||
/* HASH Configuration */
|
||||
MD5_HASH_InitStructure.HASH_AlgoSelection = HASH_AlgoSelection_MD5;
|
||||
MD5_HASH_InitStructure.HASH_AlgoMode = HASH_AlgoMode_HASH;
|
||||
MD5_HASH_InitStructure.HASH_DataType = HASH_DataType_8b;
|
||||
HASH_Init(&MD5_HASH_InitStructure);
|
||||
|
||||
/* Configure the number of valid bits in last word of the data */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
|
||||
|
||||
/* Write the Input block in the IN FIFO */
|
||||
for(i=0; i<Ilen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)inputaddr);
|
||||
inputaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != MD5BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Read the message digest */
|
||||
HASH_GetDigest(&MD5_MessageDigest);
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[0]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[1]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[2]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[3]);
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the HMAC MD5 digest.
|
||||
* @param Key: pointer to the Key used for HMAC.
|
||||
* @param Keylen: length of the Key used for HMAC.
|
||||
* @param Input: pointer to the Input buffer to be treated.
|
||||
* @param Ilen: length of the Input buffer.
|
||||
* @param Output: the returned digest
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: digest computation done
|
||||
* - ERROR: digest computation failed
|
||||
*/
|
||||
ErrorStatus HMAC_MD5(uint8_t *Key, uint32_t Keylen, uint8_t *Input,
|
||||
uint32_t Ilen, uint8_t Output[16])
|
||||
{
|
||||
HASH_InitTypeDef MD5_HASH_InitStructure;
|
||||
HASH_MsgDigest MD5_MessageDigest;
|
||||
__IO uint16_t nbvalidbitsdata = 0;
|
||||
__IO uint16_t nbvalidbitskey = 0;
|
||||
uint32_t i = 0;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
|
||||
/* Number of valid bits in last word of the Input data */
|
||||
nbvalidbitsdata = 8 * (Ilen % 4);
|
||||
|
||||
/* Number of valid bits in last word of the Key */
|
||||
nbvalidbitskey = 8 * (Keylen % 4);
|
||||
|
||||
/* HASH peripheral initialization */
|
||||
HASH_DeInit();
|
||||
|
||||
/* HASH Configuration */
|
||||
MD5_HASH_InitStructure.HASH_AlgoSelection = HASH_AlgoSelection_MD5;
|
||||
MD5_HASH_InitStructure.HASH_AlgoMode = HASH_AlgoMode_HMAC;
|
||||
MD5_HASH_InitStructure.HASH_DataType = HASH_DataType_8b;
|
||||
if(Keylen > 64)
|
||||
{
|
||||
/* HMAC long Key */
|
||||
MD5_HASH_InitStructure.HASH_HMACKeyType = HASH_HMACKeyType_LongKey;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* HMAC short Key */
|
||||
MD5_HASH_InitStructure.HASH_HMACKeyType = HASH_HMACKeyType_ShortKey;
|
||||
}
|
||||
HASH_Init(&MD5_HASH_InitStructure);
|
||||
|
||||
/* Configure the number of valid bits in last word of the Key */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitskey);
|
||||
|
||||
/* Write the Key */
|
||||
for(i=0; i<Keylen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)keyaddr);
|
||||
keyaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != MD5BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Configure the number of valid bits in last word of the Input data */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
|
||||
|
||||
/* Write the Input block in the IN FIFO */
|
||||
for(i=0; i<Ilen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)inputaddr);
|
||||
inputaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
counter =0;
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != MD5BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Configure the number of valid bits in last word of the Key */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitskey);
|
||||
|
||||
/* Write the Key */
|
||||
keyaddr = (uint32_t)Key;
|
||||
for(i=0; i<Keylen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)keyaddr);
|
||||
keyaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
counter =0;
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != MD5BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Read the message digest */
|
||||
HASH_GetDigest(&MD5_MessageDigest);
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[0]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[1]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[2]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(MD5_MessageDigest.Data[3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
||||
|
317
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_hash_sha1.c
Executable file
317
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_hash_sha1.c
Executable file
@@ -0,0 +1,317 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_hash_sha1.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides high level functions to compute the HASH SHA1 and
|
||||
* HMAC SHA1 Digest of an input message.
|
||||
* It uses the stm32f4xx_hash.c/.h drivers to access the STM32F4xx HASH
|
||||
* peripheral.
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable The HASH controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_HASH, ENABLE); function.
|
||||
*
|
||||
* 2. Calculate the HASH SHA1 Digest using HASH_SHA1() function.
|
||||
*
|
||||
* 3. Calculate the HMAC SHA1 Digest using HMAC_SHA1() function.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_hash.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HASH
|
||||
* @brief HASH driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#define SHA1BUSY_TIMEOUT ((uint32_t) 0x00010000)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup HASH_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HASH_Group6 High Level SHA1 functions
|
||||
* @brief High Level SHA1 Hash and HMAC functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
High Level SHA1 Hash and HMAC functions
|
||||
===============================================================================
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Compute the HASH SHA1 digest.
|
||||
* @param Input: pointer to the Input buffer to be treated.
|
||||
* @param Ilen: length of the Input buffer.
|
||||
* @param Output: the returned digest
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: digest computation done
|
||||
* - ERROR: digest computation failed
|
||||
*/
|
||||
ErrorStatus HASH_SHA1(uint8_t *Input, uint32_t Ilen, uint8_t Output[20])
|
||||
{
|
||||
HASH_InitTypeDef SHA1_HASH_InitStructure;
|
||||
HASH_MsgDigest SHA1_MessageDigest;
|
||||
__IO uint16_t nbvalidbitsdata = 0;
|
||||
uint32_t i = 0;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
|
||||
/* Number of valid bits in last word of the Input data */
|
||||
nbvalidbitsdata = 8 * (Ilen % 4);
|
||||
|
||||
/* HASH peripheral initialization */
|
||||
HASH_DeInit();
|
||||
|
||||
/* HASH Configuration */
|
||||
SHA1_HASH_InitStructure.HASH_AlgoSelection = HASH_AlgoSelection_SHA1;
|
||||
SHA1_HASH_InitStructure.HASH_AlgoMode = HASH_AlgoMode_HASH;
|
||||
SHA1_HASH_InitStructure.HASH_DataType = HASH_DataType_8b;
|
||||
HASH_Init(&SHA1_HASH_InitStructure);
|
||||
|
||||
/* Configure the number of valid bits in last word of the data */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
|
||||
|
||||
/* Write the Input block in the IN FIFO */
|
||||
for(i=0; i<Ilen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)inputaddr);
|
||||
inputaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != SHA1BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Read the message digest */
|
||||
HASH_GetDigest(&SHA1_MessageDigest);
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[0]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[1]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[2]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[3]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[4]);
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the HMAC SHA1 digest.
|
||||
* @param Key: pointer to the Key used for HMAC.
|
||||
* @param Keylen: length of the Key used for HMAC.
|
||||
* @param Input: pointer to the Input buffer to be treated.
|
||||
* @param Ilen: length of the Input buffer.
|
||||
* @param Output: the returned digest
|
||||
* @retval An ErrorStatus enumeration value:
|
||||
* - SUCCESS: digest computation done
|
||||
* - ERROR: digest computation failed
|
||||
*/
|
||||
ErrorStatus HMAC_SHA1(uint8_t *Key, uint32_t Keylen, uint8_t *Input,
|
||||
uint32_t Ilen, uint8_t Output[20])
|
||||
{
|
||||
HASH_InitTypeDef SHA1_HASH_InitStructure;
|
||||
HASH_MsgDigest SHA1_MessageDigest;
|
||||
__IO uint16_t nbvalidbitsdata = 0;
|
||||
__IO uint16_t nbvalidbitskey = 0;
|
||||
uint32_t i = 0;
|
||||
__IO uint32_t counter = 0;
|
||||
uint32_t busystatus = 0;
|
||||
ErrorStatus status = SUCCESS;
|
||||
uint32_t keyaddr = (uint32_t)Key;
|
||||
uint32_t inputaddr = (uint32_t)Input;
|
||||
uint32_t outputaddr = (uint32_t)Output;
|
||||
|
||||
/* Number of valid bits in last word of the Input data */
|
||||
nbvalidbitsdata = 8 * (Ilen % 4);
|
||||
|
||||
/* Number of valid bits in last word of the Key */
|
||||
nbvalidbitskey = 8 * (Keylen % 4);
|
||||
|
||||
/* HASH peripheral initialization */
|
||||
HASH_DeInit();
|
||||
|
||||
/* HASH Configuration */
|
||||
SHA1_HASH_InitStructure.HASH_AlgoSelection = HASH_AlgoSelection_SHA1;
|
||||
SHA1_HASH_InitStructure.HASH_AlgoMode = HASH_AlgoMode_HMAC;
|
||||
SHA1_HASH_InitStructure.HASH_DataType = HASH_DataType_8b;
|
||||
if(Keylen > 64)
|
||||
{
|
||||
/* HMAC long Key */
|
||||
SHA1_HASH_InitStructure.HASH_HMACKeyType = HASH_HMACKeyType_LongKey;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* HMAC short Key */
|
||||
SHA1_HASH_InitStructure.HASH_HMACKeyType = HASH_HMACKeyType_ShortKey;
|
||||
}
|
||||
HASH_Init(&SHA1_HASH_InitStructure);
|
||||
|
||||
/* Configure the number of valid bits in last word of the Key */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitskey);
|
||||
|
||||
/* Write the Key */
|
||||
for(i=0; i<Keylen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)keyaddr);
|
||||
keyaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != SHA1BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Configure the number of valid bits in last word of the Input data */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
|
||||
|
||||
/* Write the Input block in the IN FIFO */
|
||||
for(i=0; i<Ilen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)inputaddr);
|
||||
inputaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
counter =0;
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != SHA1BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Configure the number of valid bits in last word of the Key */
|
||||
HASH_SetLastWordValidBitsNbr(nbvalidbitskey);
|
||||
|
||||
/* Write the Key */
|
||||
keyaddr = (uint32_t)Key;
|
||||
for(i=0; i<Keylen; i+=4)
|
||||
{
|
||||
HASH_DataIn(*(uint32_t*)keyaddr);
|
||||
keyaddr+=4;
|
||||
}
|
||||
|
||||
/* Start the HASH processor */
|
||||
HASH_StartDigest();
|
||||
|
||||
/* wait until the Busy flag is RESET */
|
||||
counter =0;
|
||||
do
|
||||
{
|
||||
busystatus = HASH_GetFlagStatus(HASH_FLAG_BUSY);
|
||||
counter++;
|
||||
}while ((counter != SHA1BUSY_TIMEOUT) && (busystatus != RESET));
|
||||
|
||||
if (busystatus != RESET)
|
||||
{
|
||||
status = ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Read the message digest */
|
||||
HASH_GetDigest(&SHA1_MessageDigest);
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[0]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[1]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[2]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[3]);
|
||||
outputaddr+=4;
|
||||
*(uint32_t*)(outputaddr) = __REV(SHA1_MessageDigest.Data[4]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
1395
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_i2c.c
Executable file
1395
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_i2c.c
Executable file
File diff suppressed because it is too large
Load Diff
263
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_iwdg.c
Executable file
263
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_iwdg.c
Executable file
@@ -0,0 +1,263 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_iwdg.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the Independent watchdog (IWDG) peripheral:
|
||||
* - Prescaler and Counter configuration
|
||||
* - IWDG activation
|
||||
* - Flag management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* IWDG features
|
||||
* ===================================================================
|
||||
*
|
||||
* The IWDG can be started by either software or hardware (configurable
|
||||
* through option byte).
|
||||
*
|
||||
* The IWDG is clocked by its own dedicated low-speed clock (LSI) and
|
||||
* thus stays active even if the main clock fails.
|
||||
* Once the IWDG is started, the LSI is forced ON and cannot be disabled
|
||||
* (LSI cannot be disabled too), and the counter starts counting down from
|
||||
* the reset value of 0xFFF. When it reaches the end of count value (0x000)
|
||||
* a system reset is generated.
|
||||
* The IWDG counter should be reloaded at regular intervals to prevent
|
||||
* an MCU reset.
|
||||
*
|
||||
* The IWDG is implemented in the VDD voltage domain that is still functional
|
||||
* in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY).
|
||||
*
|
||||
* IWDGRST flag in RCC_CSR register can be used to inform when a IWDG
|
||||
* reset occurs.
|
||||
*
|
||||
* Min-max timeout value @32KHz (LSI): ~125us / ~32.7s
|
||||
* The IWDG timeout may vary due to LSI frequency dispersion. STM32F4xx
|
||||
* devices provide the capability to measure the LSI frequency (LSI clock
|
||||
* connected internally to TIM5 CH4 input capture). The measured value
|
||||
* can be used to have an IWDG timeout with an acceptable accuracy.
|
||||
* For more information, please refer to the STM32F4xx Reference manual
|
||||
*
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable write access to IWDG_PR and IWDG_RLR registers using
|
||||
* IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable) function
|
||||
*
|
||||
* 2. Configure the IWDG prescaler using IWDG_SetPrescaler() function
|
||||
*
|
||||
* 3. Configure the IWDG counter value using IWDG_SetReload() function.
|
||||
* This value will be loaded in the IWDG counter each time the counter
|
||||
* is reloaded, then the IWDG will start counting down from this value.
|
||||
*
|
||||
* 4. Start the IWDG using IWDG_Enable() function, when the IWDG is used
|
||||
* in software mode (no need to enable the LSI, it will be enabled
|
||||
* by hardware)
|
||||
*
|
||||
* 5. Then the application program must reload the IWDG counter at regular
|
||||
* intervals during normal operation to prevent an MCU reset, using
|
||||
* IWDG_ReloadCounter() function.
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_iwdg.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup IWDG
|
||||
* @brief IWDG driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
|
||||
/* KR register bit mask */
|
||||
#define KR_KEY_RELOAD ((uint16_t)0xAAAA)
|
||||
#define KR_KEY_ENABLE ((uint16_t)0xCCCC)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup IWDG_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup IWDG_Group1 Prescaler and Counter configuration functions
|
||||
* @brief Prescaler and Counter configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Prescaler and Counter configuration functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables write access to IWDG_PR and IWDG_RLR registers.
|
||||
* @param IWDG_WriteAccess: new state of write access to IWDG_PR and IWDG_RLR registers.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg IWDG_WriteAccess_Enable: Enable write access to IWDG_PR and IWDG_RLR registers
|
||||
* @arg IWDG_WriteAccess_Disable: Disable write access to IWDG_PR and IWDG_RLR registers
|
||||
* @retval None
|
||||
*/
|
||||
void IWDG_WriteAccessCmd(uint16_t IWDG_WriteAccess)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_IWDG_WRITE_ACCESS(IWDG_WriteAccess));
|
||||
IWDG->KR = IWDG_WriteAccess;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets IWDG Prescaler value.
|
||||
* @param IWDG_Prescaler: specifies the IWDG Prescaler value.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg IWDG_Prescaler_4: IWDG prescaler set to 4
|
||||
* @arg IWDG_Prescaler_8: IWDG prescaler set to 8
|
||||
* @arg IWDG_Prescaler_16: IWDG prescaler set to 16
|
||||
* @arg IWDG_Prescaler_32: IWDG prescaler set to 32
|
||||
* @arg IWDG_Prescaler_64: IWDG prescaler set to 64
|
||||
* @arg IWDG_Prescaler_128: IWDG prescaler set to 128
|
||||
* @arg IWDG_Prescaler_256: IWDG prescaler set to 256
|
||||
* @retval None
|
||||
*/
|
||||
void IWDG_SetPrescaler(uint8_t IWDG_Prescaler)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_IWDG_PRESCALER(IWDG_Prescaler));
|
||||
IWDG->PR = IWDG_Prescaler;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets IWDG Reload value.
|
||||
* @param Reload: specifies the IWDG Reload value.
|
||||
* This parameter must be a number between 0 and 0x0FFF.
|
||||
* @retval None
|
||||
*/
|
||||
void IWDG_SetReload(uint16_t Reload)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_IWDG_RELOAD(Reload));
|
||||
IWDG->RLR = Reload;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reloads IWDG counter with value defined in the reload register
|
||||
* (write access to IWDG_PR and IWDG_RLR registers disabled).
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void IWDG_ReloadCounter(void)
|
||||
{
|
||||
IWDG->KR = KR_KEY_RELOAD;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup IWDG_Group2 IWDG activation function
|
||||
* @brief IWDG activation function
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
IWDG activation function
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables IWDG (write access to IWDG_PR and IWDG_RLR registers disabled).
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void IWDG_Enable(void)
|
||||
{
|
||||
IWDG->KR = KR_KEY_ENABLE;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup IWDG_Group3 Flag management function
|
||||
* @brief Flag management function
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Flag management function
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified IWDG flag is set or not.
|
||||
* @param IWDG_FLAG: specifies the flag to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg IWDG_FLAG_PVU: Prescaler Value Update on going
|
||||
* @arg IWDG_FLAG_RVU: Reload Value Update on going
|
||||
* @retval The new state of IWDG_FLAG (SET or RESET).
|
||||
*/
|
||||
FlagStatus IWDG_GetFlagStatus(uint16_t IWDG_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_IWDG_FLAG(IWDG_FLAG));
|
||||
if ((IWDG->SR & IWDG_FLAG) != (uint32_t)RESET)
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the flag status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
656
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_pwr.c
Executable file
656
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_pwr.c
Executable file
@@ -0,0 +1,656 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_pwr.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the Power Controller (PWR) peripheral:
|
||||
* - Backup Domain Access
|
||||
* - PVD configuration
|
||||
* - WakeUp pin configuration
|
||||
* - Main and Backup Regulators configuration
|
||||
* - FLASH Power Down configuration
|
||||
* - Low Power modes configuration
|
||||
* - Flags management
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_pwr.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup PWR
|
||||
* @brief PWR driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* --------- PWR registers bit address in the alias region ---------- */
|
||||
#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
|
||||
|
||||
/* --- CR Register ---*/
|
||||
|
||||
/* Alias word address of DBP bit */
|
||||
#define CR_OFFSET (PWR_OFFSET + 0x00)
|
||||
#define DBP_BitNumber 0x08
|
||||
#define CR_DBP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))
|
||||
|
||||
/* Alias word address of PVDE bit */
|
||||
#define PVDE_BitNumber 0x04
|
||||
#define CR_PVDE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PVDE_BitNumber * 4))
|
||||
|
||||
/* Alias word address of FPDS bit */
|
||||
#define FPDS_BitNumber 0x09
|
||||
#define CR_FPDS_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (FPDS_BitNumber * 4))
|
||||
|
||||
/* Alias word address of PMODE bit */
|
||||
#define PMODE_BitNumber 0x0E
|
||||
#define CR_PMODE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PMODE_BitNumber * 4))
|
||||
|
||||
|
||||
/* --- CSR Register ---*/
|
||||
|
||||
/* Alias word address of EWUP bit */
|
||||
#define CSR_OFFSET (PWR_OFFSET + 0x04)
|
||||
#define EWUP_BitNumber 0x08
|
||||
#define CSR_EWUP_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (EWUP_BitNumber * 4))
|
||||
|
||||
/* Alias word address of BRE bit */
|
||||
#define BRE_BitNumber 0x09
|
||||
#define CSR_BRE_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (BRE_BitNumber * 4))
|
||||
|
||||
/* ------------------ PWR registers bit mask ------------------------ */
|
||||
|
||||
/* CR register bit mask */
|
||||
#define CR_DS_MASK ((uint32_t)0xFFFFFFFC)
|
||||
#define CR_PLS_MASK ((uint32_t)0xFFFFFF1F)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup PWR_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Group1 Backup Domain Access function
|
||||
* @brief Backup Domain Access function
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Backup Domain Access function
|
||||
===============================================================================
|
||||
|
||||
After reset, the backup domain (RTC registers, RTC backup data
|
||||
registers and backup SRAM) is protected against possible unwanted
|
||||
write accesses.
|
||||
To enable access to the RTC Domain and RTC registers, proceed as follows:
|
||||
- Enable the Power Controller (PWR) APB1 interface clock using the
|
||||
RCC_APB1PeriphClockCmd() function.
|
||||
- Enable access to RTC domain using the PWR_BackupAccessCmd() function.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the PWR peripheral registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_DeInit(void)
|
||||
{
|
||||
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, ENABLE);
|
||||
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, DISABLE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables access to the backup domain (RTC registers, RTC
|
||||
* backup data registers and backup SRAM).
|
||||
* @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the
|
||||
* Backup Domain Access should be kept enabled.
|
||||
* @param NewState: new state of the access to the backup domain.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_BackupAccessCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Group2 PVD configuration functions
|
||||
* @brief PVD configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
PVD configuration functions
|
||||
===============================================================================
|
||||
|
||||
- The PVD is used to monitor the VDD power supply by comparing it to a threshold
|
||||
selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
|
||||
- A PVDO flag is available to indicate if VDD/VDDA is higher or lower than the
|
||||
PVD threshold. This event is internally connected to the EXTI line16
|
||||
and can generate an interrupt if enabled through the EXTI registers.
|
||||
- The PVD is stopped in Standby mode.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
|
||||
* @param PWR_PVDLevel: specifies the PVD detection level
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_PVDLevel_0: PVD detection level set to 2.0V
|
||||
* @arg PWR_PVDLevel_1: PVD detection level set to 2.2V
|
||||
* @arg PWR_PVDLevel_2: PVD detection level set to 2.3V
|
||||
* @arg PWR_PVDLevel_3: PVD detection level set to 2.5V
|
||||
* @arg PWR_PVDLevel_4: PVD detection level set to 2.7V
|
||||
* @arg PWR_PVDLevel_5: PVD detection level set to 2.8V
|
||||
* @arg PWR_PVDLevel_6: PVD detection level set to 2.9V
|
||||
* @arg PWR_PVDLevel_7: PVD detection level set to 3.0V
|
||||
* @note Refer to the electrical characteristics of you device datasheet for more details.
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel)
|
||||
{
|
||||
uint32_t tmpreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_PVD_LEVEL(PWR_PVDLevel));
|
||||
|
||||
tmpreg = PWR->CR;
|
||||
|
||||
/* Clear PLS[7:5] bits */
|
||||
tmpreg &= CR_PLS_MASK;
|
||||
|
||||
/* Set PLS[7:5] bits according to PWR_PVDLevel value */
|
||||
tmpreg |= PWR_PVDLevel;
|
||||
|
||||
/* Store the new value */
|
||||
PWR->CR = tmpreg;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the Power Voltage Detector(PVD).
|
||||
* @param NewState: new state of the PVD.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_PVDCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)NewState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Group3 WakeUp pin configuration functions
|
||||
* @brief WakeUp pin configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
WakeUp pin configuration functions
|
||||
===============================================================================
|
||||
|
||||
- WakeUp pin is used to wakeup the system from Standby mode. This pin is
|
||||
forced in input pull down configuration and is active on rising edges.
|
||||
- There is only one WakeUp pin: WakeUp Pin 1 on PA.00.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the WakeUp Pin functionality.
|
||||
* @param NewState: new state of the WakeUp Pin functionality.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_WakeUpPinCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
*(__IO uint32_t *) CSR_EWUP_BB = (uint32_t)NewState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Group4 Main and Backup Regulators configuration functions
|
||||
* @brief Main and Backup Regulators configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Main and Backup Regulators configuration functions
|
||||
===============================================================================
|
||||
|
||||
- The backup domain includes 4 Kbytes of backup SRAM accessible only from the
|
||||
CPU, and address in 32-bit, 16-bit or 8-bit mode. Its content is retained
|
||||
even in Standby or VBAT mode when the low power backup regulator is enabled.
|
||||
It can be considered as an internal EEPROM when VBAT is always present.
|
||||
You can use the PWR_BackupRegulatorCmd() function to enable the low power
|
||||
backup regulator and use the PWR_GetFlagStatus(PWR_FLAG_BRR) to check if it is
|
||||
ready or not.
|
||||
|
||||
- When the backup domain is supplied by VDD (analog switch connected to VDD)
|
||||
the backup SRAM is powered from VDD which replaces the VBAT power supply to
|
||||
save battery life.
|
||||
|
||||
- The backup SRAM is not mass erased by an tamper event. It is read protected
|
||||
to prevent confidential data, such as cryptographic private key, from being
|
||||
accessed. The backup SRAM can be erased only through the Flash interface when
|
||||
a protection level change from level 1 to level 0 is requested.
|
||||
Refer to the description of Read protection (RDP) in the Flash programming manual.
|
||||
|
||||
- The main internal regulator can be configured to have a tradeoff between performance
|
||||
and power consumption when the device does not operate at the maximum frequency.
|
||||
This is done through PWR_MainRegulatorModeConfig() function which configure VOS bit
|
||||
in PWR_CR register:
|
||||
- When this bit is set (Regulator voltage output Scale 1 mode selected) the System
|
||||
frequency can go up to 168 MHz.
|
||||
- When this bit is reset (Regulator voltage output Scale 2 mode selected) the System
|
||||
frequency can go up to 144 MHz.
|
||||
Refer to the datasheets for more details.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the Backup Regulator.
|
||||
* @param NewState: new state of the Backup Regulator.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_BackupRegulatorCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
*(__IO uint32_t *) CSR_BRE_BB = (uint32_t)NewState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configures the main internal regulator output voltage.
|
||||
* @param PWR_Regulator_Voltage: specifies the regulator output voltage to achieve
|
||||
* a tradeoff between performance and power consumption when the device does
|
||||
* not operate at the maximum frequency (refer to the datasheets for more details).
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_Regulator_Voltage_Scale1: Regulator voltage output Scale 1 mode,
|
||||
* System frequency up to 168 MHz.
|
||||
* @arg PWR_Regulator_Voltage_Scale2: Regulator voltage output Scale 2 mode,
|
||||
* System frequency up to 144 MHz.
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_MainRegulatorModeConfig(uint32_t PWR_Regulator_Voltage)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_REGULATOR_VOLTAGE(PWR_Regulator_Voltage));
|
||||
|
||||
if (PWR_Regulator_Voltage == PWR_Regulator_Voltage_Scale2)
|
||||
{
|
||||
PWR->CR &= ~PWR_Regulator_Voltage_Scale1;
|
||||
}
|
||||
else
|
||||
{
|
||||
PWR->CR |= PWR_Regulator_Voltage_Scale1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Group5 FLASH Power Down configuration functions
|
||||
* @brief FLASH Power Down configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
FLASH Power Down configuration functions
|
||||
===============================================================================
|
||||
|
||||
- By setting the FPDS bit in the PWR_CR register by using the PWR_FlashPowerDownCmd()
|
||||
function, the Flash memory also enters power down mode when the device enters
|
||||
Stop mode. When the Flash memory is in power down mode, an additional startup
|
||||
delay is incurred when waking up from Stop mode.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the Flash Power Down in STOP mode.
|
||||
* @param NewState: new state of the Flash power mode.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_FlashPowerDownCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
*(__IO uint32_t *) CR_FPDS_BB = (uint32_t)NewState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Group6 Low Power modes configuration functions
|
||||
* @brief Low Power modes configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Low Power modes configuration functions
|
||||
===============================================================================
|
||||
|
||||
The devices feature 3 low-power modes:
|
||||
- Sleep mode: Cortex-M4 core stopped, peripherals kept running.
|
||||
- Stop mode: all clocks are stopped, regulator running, regulator in low power mode
|
||||
- Standby mode: 1.2V domain powered off.
|
||||
|
||||
Sleep mode
|
||||
===========
|
||||
- Entry:
|
||||
- The Sleep mode is entered by using the __WFI() or __WFE() functions.
|
||||
- Exit:
|
||||
- Any peripheral interrupt acknowledged by the nested vectored interrupt
|
||||
controller (NVIC) can wake up the device from Sleep mode.
|
||||
|
||||
Stop mode
|
||||
==========
|
||||
In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI,
|
||||
and the HSE RC oscillators are disabled. Internal SRAM and register contents
|
||||
are preserved.
|
||||
The voltage regulator can be configured either in normal or low-power mode.
|
||||
To minimize the consumption In Stop mode, FLASH can be powered off before
|
||||
entering the Stop mode. It can be switched on again by software after exiting
|
||||
the Stop mode using the PWR_FlashPowerDownCmd() function.
|
||||
|
||||
- Entry:
|
||||
- The Stop mode is entered using the PWR_EnterSTOPMode(PWR_Regulator_LowPower,)
|
||||
function with regulator in LowPower or with Regulator ON.
|
||||
- Exit:
|
||||
- Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
|
||||
|
||||
Standby mode
|
||||
============
|
||||
The Standby mode allows to achieve the lowest power consumption. It is based
|
||||
on the Cortex-M4 deepsleep mode, with the voltage regulator disabled.
|
||||
The 1.2V domain is consequently powered off. The PLL, the HSI oscillator and
|
||||
the HSE oscillator are also switched off. SRAM and register contents are lost
|
||||
except for the RTC registers, RTC backup registers, backup SRAM and Standby
|
||||
circuitry.
|
||||
|
||||
The voltage regulator is OFF.
|
||||
|
||||
- Entry:
|
||||
- The Standby mode is entered using the PWR_EnterSTANDBYMode() function.
|
||||
- Exit:
|
||||
- WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
|
||||
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
|
||||
|
||||
Auto-wakeup (AWU) from low-power mode
|
||||
=====================================
|
||||
The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
|
||||
Wakeup event, a tamper event, a time-stamp event, or a comparator event,
|
||||
without depending on an external interrupt (Auto-wakeup mode).
|
||||
|
||||
- RTC auto-wakeup (AWU) from the Stop mode
|
||||
----------------------------------------
|
||||
|
||||
- To wake up from the Stop mode with an RTC alarm event, it is necessary to:
|
||||
- Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
|
||||
or Event modes) using the EXTI_Init() function.
|
||||
- Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
|
||||
- Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
|
||||
and RTC_AlarmCmd() functions.
|
||||
- To wake up from the Stop mode with an RTC Tamper or time stamp event, it
|
||||
is necessary to:
|
||||
- Configure the EXTI Line 21 to be sensitive to rising edges (Interrupt
|
||||
or Event modes) using the EXTI_Init() function.
|
||||
- Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
|
||||
function
|
||||
- Configure the RTC to detect the tamper or time stamp event using the
|
||||
RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
|
||||
functions.
|
||||
- To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
|
||||
- Configure the EXTI Line 22 to be sensitive to rising edges (Interrupt
|
||||
or Event modes) using the EXTI_Init() function.
|
||||
- Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
|
||||
- Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
|
||||
RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
|
||||
|
||||
- RTC auto-wakeup (AWU) from the Standby mode
|
||||
-------------------------------------------
|
||||
- To wake up from the Standby mode with an RTC alarm event, it is necessary to:
|
||||
- Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
|
||||
- Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
|
||||
and RTC_AlarmCmd() functions.
|
||||
- To wake up from the Standby mode with an RTC Tamper or time stamp event, it
|
||||
is necessary to:
|
||||
- Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
|
||||
function
|
||||
- Configure the RTC to detect the tamper or time stamp event using the
|
||||
RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
|
||||
functions.
|
||||
- To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
|
||||
- Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
|
||||
- Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
|
||||
RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enters STOP mode.
|
||||
*
|
||||
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
|
||||
* @note When exiting Stop mode by issuing an interrupt or a wakeup event,
|
||||
* the HSI RC oscillator is selected as system clock.
|
||||
* @note When the voltage regulator operates in low power mode, an additional
|
||||
* startup delay is incurred when waking up from Stop mode.
|
||||
* By keeping the internal regulator ON during Stop mode, the consumption
|
||||
* is higher although the startup time is reduced.
|
||||
*
|
||||
* @param PWR_Regulator: specifies the regulator state in STOP mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_Regulator_ON: STOP mode with regulator ON
|
||||
* @arg PWR_Regulator_LowPower: STOP mode with regulator in low power mode
|
||||
* @param PWR_STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_STOPEntry_WFI: enter STOP mode with WFI instruction
|
||||
* @arg PWR_STOPEntry_WFE: enter STOP mode with WFE instruction
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry)
|
||||
{
|
||||
uint32_t tmpreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_REGULATOR(PWR_Regulator));
|
||||
assert_param(IS_PWR_STOP_ENTRY(PWR_STOPEntry));
|
||||
|
||||
/* Select the regulator state in STOP mode ---------------------------------*/
|
||||
tmpreg = PWR->CR;
|
||||
/* Clear PDDS and LPDSR bits */
|
||||
tmpreg &= CR_DS_MASK;
|
||||
|
||||
/* Set LPDSR bit according to PWR_Regulator value */
|
||||
tmpreg |= PWR_Regulator;
|
||||
|
||||
/* Store the new value */
|
||||
PWR->CR = tmpreg;
|
||||
|
||||
/* Set SLEEPDEEP bit of Cortex System Control Register */
|
||||
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
|
||||
|
||||
/* Select STOP mode entry --------------------------------------------------*/
|
||||
if(PWR_STOPEntry == PWR_STOPEntry_WFI)
|
||||
{
|
||||
/* Request Wait For Interrupt */
|
||||
__WFI();
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Request Wait For Event */
|
||||
__WFE();
|
||||
}
|
||||
/* Reset SLEEPDEEP bit of Cortex System Control Register */
|
||||
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enters STANDBY mode.
|
||||
* @note In Standby mode, all I/O pins are high impedance except for:
|
||||
* - Reset pad (still available)
|
||||
* - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC
|
||||
* Alarm out, or RTC clock calibration out.
|
||||
* - RTC_AF2 pin (PI8) if configured for tamper or time-stamp.
|
||||
* - WKUP pin 1 (PA0) if enabled.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_EnterSTANDBYMode(void)
|
||||
{
|
||||
/* Clear Wakeup flag */
|
||||
PWR->CR |= PWR_CR_CWUF;
|
||||
|
||||
/* Select STANDBY mode */
|
||||
PWR->CR |= PWR_CR_PDDS;
|
||||
|
||||
/* Set SLEEPDEEP bit of Cortex System Control Register */
|
||||
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
|
||||
|
||||
/* This option is used to ensure that store operations are completed */
|
||||
#if defined ( __CC_ARM )
|
||||
__force_stores();
|
||||
#endif
|
||||
/* Request Wait For Interrupt */
|
||||
__WFI();
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Group7 Flags management functions
|
||||
* @brief Flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Flags management functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified PWR flag is set or not.
|
||||
* @param PWR_FLAG: specifies the flag to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
|
||||
* was received from the WKUP pin or from the RTC alarm (Alarm A
|
||||
* or Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup.
|
||||
* An additional wakeup event is detected if the WKUP pin is enabled
|
||||
* (by setting the EWUP bit) when the WKUP pin level is already high.
|
||||
* @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
|
||||
* resumed from StandBy mode.
|
||||
* @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
|
||||
* by the PWR_PVDCmd() function. The PVD is stopped by Standby mode
|
||||
* For this reason, this bit is equal to 0 after Standby or reset
|
||||
* until the PVDE bit is set.
|
||||
* @arg PWR_FLAG_BRR: Backup regulator ready flag. This bit is not reset
|
||||
* when the device wakes up from Standby mode or by a system reset
|
||||
* or power reset.
|
||||
* @arg PWR_FLAG_VOSRDY: This flag indicates that the Regulator voltage
|
||||
* scaling output selection is ready.
|
||||
* @retval The new state of PWR_FLAG (SET or RESET).
|
||||
*/
|
||||
FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_GET_FLAG(PWR_FLAG));
|
||||
|
||||
if ((PWR->CSR & PWR_FLAG) != (uint32_t)RESET)
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the flag status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the PWR's pending flags.
|
||||
* @param PWR_FLAG: specifies the flag to clear.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_FLAG_WU: Wake Up flag
|
||||
* @arg PWR_FLAG_SB: StandBy flag
|
||||
* @retval None
|
||||
*/
|
||||
void PWR_ClearFlag(uint32_t PWR_FLAG)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_CLEAR_FLAG(PWR_FLAG));
|
||||
|
||||
PWR->CR |= PWR_FLAG << 2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
1808
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_rcc.c
Executable file
1808
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_rcc.c
Executable file
File diff suppressed because it is too large
Load Diff
399
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_rng.c
Executable file
399
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_rng.c
Executable file
@@ -0,0 +1,399 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_rng.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the Random Number Generator (RNG) peripheral:
|
||||
* - Initialization and Configuration
|
||||
* - Get 32 bit Random number
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable The RNG controller clock using
|
||||
* RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE) function.
|
||||
*
|
||||
* 2. Activate the RNG peripheral using RNG_Cmd() function.
|
||||
*
|
||||
* 3. Wait until the 32 bit Random number Generator contains a valid
|
||||
* random data (using polling/interrupt mode). For more details,
|
||||
* refer to "Interrupts and flags management functions" module
|
||||
* description.
|
||||
*
|
||||
* 4. Get the 32 bit Random number using RNG_GetRandomNumber() function
|
||||
*
|
||||
* 5. To get another 32 bit Random number, go to step 3.
|
||||
*
|
||||
*
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_rng.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup RNG
|
||||
* @brief RNG driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup RNG_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup RNG_Group1 Initialization and Configuration functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Initialization and Configuration functions
|
||||
===============================================================================
|
||||
This section provides functions allowing to
|
||||
- Initialize the RNG peripheral
|
||||
- Enable or disable the RNG peripheral
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the RNG peripheral registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void RNG_DeInit(void)
|
||||
{
|
||||
/* Enable RNG reset state */
|
||||
RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_RNG, ENABLE);
|
||||
|
||||
/* Release RNG from reset state */
|
||||
RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_RNG, DISABLE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the RNG peripheral.
|
||||
* @param NewState: new state of the RNG peripheral.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void RNG_Cmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the RNG */
|
||||
RNG->CR |= RNG_CR_RNGEN;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the RNG */
|
||||
RNG->CR &= ~RNG_CR_RNGEN;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup RNG_Group2 Get 32 bit Random number function
|
||||
* @brief Get 32 bit Random number function
|
||||
*
|
||||
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Get 32 bit Random number function
|
||||
===============================================================================
|
||||
This section provides a function allowing to get the 32 bit Random number
|
||||
|
||||
@note Before to call this function you have to wait till DRDY flag is set,
|
||||
using RNG_GetFlagStatus(RNG_FLAG_DRDY) function.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Returns a 32-bit random number.
|
||||
*
|
||||
* @note Before to call this function you have to wait till DRDY (data ready)
|
||||
* flag is set, using RNG_GetFlagStatus(RNG_FLAG_DRDY) function.
|
||||
* @note Each time the the Random number data is read (using RNG_GetRandomNumber()
|
||||
* function), the RNG_FLAG_DRDY flag is automatically cleared.
|
||||
* @note In the case of a seed error, the generation of random numbers is
|
||||
* interrupted for as long as the SECS bit is '1'. If a number is
|
||||
* available in the RNG_DR register, it must not be used because it may
|
||||
* not have enough entropy. In this case, it is recommended to clear the
|
||||
* SEIS bit(using RNG_ClearFlag(RNG_FLAG_SECS) function), then disable
|
||||
* and enable the RNG peripheral (using RNG_Cmd() function) to
|
||||
* reinitialize and restart the RNG.
|
||||
* @note In the case of a clock error, the RNG is no more able to generate
|
||||
* random numbers because the PLL48CLK clock is not correct. User have
|
||||
* to check that the clock controller is correctly configured to provide
|
||||
* the RNG clock and clear the CEIS bit (using RNG_ClearFlag(RNG_FLAG_CECS)
|
||||
* function) . The clock error has no impact on the previously generated
|
||||
* random numbers, and the RNG_DR register contents can be used.
|
||||
*
|
||||
* @param None
|
||||
* @retval 32-bit random number.
|
||||
*/
|
||||
uint32_t RNG_GetRandomNumber(void)
|
||||
{
|
||||
/* Return the 32 bit random number from the DR register */
|
||||
return RNG->DR;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup RNG_Group3 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
This section provides functions allowing to configure the RNG Interrupts and
|
||||
to get the status and clear flags and Interrupts pending bits.
|
||||
|
||||
The RNG provides 3 Interrupts sources and 3 Flags:
|
||||
|
||||
Flags :
|
||||
----------
|
||||
1. RNG_FLAG_DRDY : In the case of the RNG_DR register contains valid
|
||||
random data. it is cleared by reading the valid data
|
||||
(using RNG_GetRandomNumber() function).
|
||||
|
||||
2. RNG_FLAG_CECS : In the case of a seed error detection.
|
||||
|
||||
3. RNG_FLAG_SECS : In the case of a clock error detection.
|
||||
|
||||
|
||||
Interrupts :
|
||||
------------
|
||||
if enabled, an RNG interrupt is pending :
|
||||
|
||||
1. In the case of the RNG_DR register contains valid random data.
|
||||
This interrupt source is cleared once the RNG_DR register has been read
|
||||
(using RNG_GetRandomNumber() function) until a new valid value is
|
||||
computed.
|
||||
|
||||
or
|
||||
2. In the case of a seed error : One of the following faulty sequences has
|
||||
been detected:
|
||||
- More than 64 consecutive bits at the same value (0 or 1)
|
||||
- More than 32 consecutive alternance of 0 and 1 (0101010101...01)
|
||||
This interrupt source is cleared using RNG_ClearITPendingBit(RNG_IT_SEI)
|
||||
function.
|
||||
|
||||
or
|
||||
3. In the case of a clock error : the PLL48CLK (RNG peripheral clock source)
|
||||
was not correctly detected (fPLL48CLK< fHCLK/16).
|
||||
This interrupt source is cleared using RNG_ClearITPendingBit(RNG_IT_CEI)
|
||||
function.
|
||||
@note In this case, User have to check that the clock controller is
|
||||
correctly configured to provide the RNG clock.
|
||||
|
||||
Managing the RNG controller events :
|
||||
------------------------------------
|
||||
The user should identify which mode will be used in his application to manage
|
||||
the RNG controller events: Polling mode or Interrupt mode.
|
||||
|
||||
1. In the Polling Mode it is advised to use the following functions:
|
||||
- RNG_GetFlagStatus() : to check if flags events occur.
|
||||
- RNG_ClearFlag() : to clear the flags events.
|
||||
|
||||
@note RNG_FLAG_DRDY can not be cleared by RNG_ClearFlag(). it is cleared only
|
||||
by reading the Random number data.
|
||||
|
||||
2. In the Interrupt Mode it is advised to use the following functions:
|
||||
- RNG_ITConfig() : to enable or disable the interrupt source.
|
||||
- RNG_GetITStatus() : to check if Interrupt occurs.
|
||||
- RNG_ClearITPendingBit() : to clear the Interrupt pending Bit
|
||||
(corresponding Flag).
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the RNG interrupt.
|
||||
* @note The RNG provides 3 interrupt sources,
|
||||
* - Computed data is ready event (DRDY), and
|
||||
* - Seed error Interrupt (SEI) and
|
||||
* - Clock error Interrupt (CEI),
|
||||
* all these interrupts sources are enabled by setting the IE bit in
|
||||
* CR register. However, each interrupt have its specific status bit
|
||||
* (see RNG_GetITStatus() function) and clear bit except the DRDY event
|
||||
* (see RNG_ClearITPendingBit() function).
|
||||
* @param NewState: new state of the RNG interrupt.
|
||||
* This parameter can be: ENABLE or DISABLE.
|
||||
* @retval None
|
||||
*/
|
||||
void RNG_ITConfig(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
if (NewState != DISABLE)
|
||||
{
|
||||
/* Enable the RNG interrupt */
|
||||
RNG->CR |= RNG_CR_IE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable the RNG interrupt */
|
||||
RNG->CR &= ~RNG_CR_IE;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified RNG flag is set or not.
|
||||
* @param RNG_FLAG: specifies the RNG flag to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg RNG_FLAG_DRDY: Data Ready flag.
|
||||
* @arg RNG_FLAG_CECS: Clock Error Current flag.
|
||||
* @arg RNG_FLAG_SECS: Seed Error Current flag.
|
||||
* @retval The new state of RNG_FLAG (SET or RESET).
|
||||
*/
|
||||
FlagStatus RNG_GetFlagStatus(uint8_t RNG_FLAG)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RNG_GET_FLAG(RNG_FLAG));
|
||||
|
||||
/* Check the status of the specified RNG flag */
|
||||
if ((RNG->SR & RNG_FLAG) != (uint8_t)RESET)
|
||||
{
|
||||
/* RNG_FLAG is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* RNG_FLAG is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the RNG_FLAG status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Clears the RNG flags.
|
||||
* @param RNG_FLAG: specifies the flag to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg RNG_FLAG_CECS: Clock Error Current flag.
|
||||
* @arg RNG_FLAG_SECS: Seed Error Current flag.
|
||||
* @note RNG_FLAG_DRDY can not be cleared by RNG_ClearFlag() function.
|
||||
* This flag is cleared only by reading the Random number data (using
|
||||
* RNG_GetRandomNumber() function).
|
||||
* @retval None
|
||||
*/
|
||||
void RNG_ClearFlag(uint8_t RNG_FLAG)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RNG_CLEAR_FLAG(RNG_FLAG));
|
||||
/* Clear the selected RNG flags */
|
||||
RNG->SR = ~(uint32_t)(((uint32_t)RNG_FLAG) << 4);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the specified RNG interrupt has occurred or not.
|
||||
* @param RNG_IT: specifies the RNG interrupt source to check.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg RNG_IT_CEI: Clock Error Interrupt.
|
||||
* @arg RNG_IT_SEI: Seed Error Interrupt.
|
||||
* @retval The new state of RNG_IT (SET or RESET).
|
||||
*/
|
||||
ITStatus RNG_GetITStatus(uint8_t RNG_IT)
|
||||
{
|
||||
ITStatus bitstatus = RESET;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RNG_GET_IT(RNG_IT));
|
||||
|
||||
/* Check the status of the specified RNG interrupt */
|
||||
if ((RNG->SR & RNG_IT) != (uint8_t)RESET)
|
||||
{
|
||||
/* RNG_IT is set */
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* RNG_IT is reset */
|
||||
bitstatus = RESET;
|
||||
}
|
||||
/* Return the RNG_IT status */
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Clears the RNG interrupt pending bit(s).
|
||||
* @param RNG_IT: specifies the RNG interrupt pending bit(s) to clear.
|
||||
* This parameter can be any combination of the following values:
|
||||
* @arg RNG_IT_CEI: Clock Error Interrupt.
|
||||
* @arg RNG_IT_SEI: Seed Error Interrupt.
|
||||
* @retval None
|
||||
*/
|
||||
void RNG_ClearITPendingBit(uint8_t RNG_IT)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RNG_IT(RNG_IT));
|
||||
|
||||
/* Clear the selected RNG interrupt pending bit */
|
||||
RNG->SR = (uint8_t)~RNG_IT;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
2732
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_rtc.c
Executable file
2732
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_rtc.c
Executable file
File diff suppressed because it is too large
Load Diff
1004
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_sdio.c
Executable file
1004
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_sdio.c
Executable file
File diff suppressed because it is too large
Load Diff
1286
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_spi.c
Executable file
1286
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_spi.c
Executable file
File diff suppressed because it is too large
Load Diff
197
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_syscfg.c
Executable file
197
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_syscfg.c
Executable file
@@ -0,0 +1,197 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_syscfg.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the SYSCFG peripheral.
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
*
|
||||
* This driver provides functions for:
|
||||
*
|
||||
* 1. Remapping the memory accessible in the code area using SYSCFG_MemoryRemapConfig()
|
||||
*
|
||||
* 2. Manage the EXTI lines connection to the GPIOs using SYSCFG_EXTILineConfig()
|
||||
*
|
||||
* 3. Select the ETHERNET media interface (RMII/RII) using SYSCFG_ETH_MediaInterfaceConfig()
|
||||
*
|
||||
* @note SYSCFG APB clock must be enabled to get write access to SYSCFG registers,
|
||||
* using RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_syscfg.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup SYSCFG
|
||||
* @brief SYSCFG driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* ------------ RCC registers bit address in the alias region ----------- */
|
||||
#define SYSCFG_OFFSET (SYSCFG_BASE - PERIPH_BASE)
|
||||
/* --- PMC Register ---*/
|
||||
/* Alias word address of MII_RMII_SEL bit */
|
||||
#define PMC_OFFSET (SYSCFG_OFFSET + 0x04)
|
||||
#define MII_RMII_SEL_BitNumber ((uint8_t)0x17)
|
||||
#define PMC_MII_RMII_SEL_BB (PERIPH_BB_BASE + (PMC_OFFSET * 32) + (MII_RMII_SEL_BitNumber * 4))
|
||||
|
||||
/* --- CMPCR Register ---*/
|
||||
/* Alias word address of CMP_PD bit */
|
||||
#define CMPCR_OFFSET (SYSCFG_OFFSET + 0x20)
|
||||
#define CMP_PD_BitNumber ((uint8_t)0x00)
|
||||
#define CMPCR_CMP_PD_BB (PERIPH_BB_BASE + (CMPCR_OFFSET * 32) + (CMP_PD_BitNumber * 4))
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup SYSCFG_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the Alternate Functions (remap and EXTI configuration)
|
||||
* registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void SYSCFG_DeInit(void)
|
||||
{
|
||||
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, ENABLE);
|
||||
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, DISABLE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Changes the mapping of the specified pin.
|
||||
* @param SYSCFG_Memory: selects the memory remapping.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg SYSCFG_MemoryRemap_Flash: Main Flash memory mapped at 0x00000000
|
||||
* @arg SYSCFG_MemoryRemap_SystemFlash: System Flash memory mapped at 0x00000000
|
||||
* @arg SYSCFG_MemoryRemap_FSMC: FSMC (Bank1 (NOR/PSRAM 1 and 2) mapped at 0x00000000
|
||||
* @arg SYSCFG_MemoryRemap_SRAM: Embedded SRAM (112kB) mapped at 0x00000000
|
||||
* @retval None
|
||||
*/
|
||||
void SYSCFG_MemoryRemapConfig(uint8_t SYSCFG_MemoryRemap)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_SYSCFG_MEMORY_REMAP_CONFING(SYSCFG_MemoryRemap));
|
||||
|
||||
SYSCFG->MEMRMP = SYSCFG_MemoryRemap;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Selects the GPIO pin used as EXTI Line.
|
||||
* @param EXTI_PortSourceGPIOx : selects the GPIO port to be used as source for
|
||||
* EXTI lines where x can be (A..I).
|
||||
* @param EXTI_PinSourcex: specifies the EXTI line to be configured.
|
||||
* This parameter can be EXTI_PinSourcex where x can be (0..15, except
|
||||
* for EXTI_PortSourceGPIOI x can be (0..11).
|
||||
* @retval None
|
||||
*/
|
||||
void SYSCFG_EXTILineConfig(uint8_t EXTI_PortSourceGPIOx, uint8_t EXTI_PinSourcex)
|
||||
{
|
||||
uint32_t tmp = 0x00;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_EXTI_PORT_SOURCE(EXTI_PortSourceGPIOx));
|
||||
assert_param(IS_EXTI_PIN_SOURCE(EXTI_PinSourcex));
|
||||
|
||||
tmp = ((uint32_t)0x0F) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03));
|
||||
SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] &= ~tmp;
|
||||
SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] |= (((uint32_t)EXTI_PortSourceGPIOx) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03)));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Selects the ETHERNET media interface
|
||||
* @param SYSCFG_ETH_MediaInterface: specifies the Media Interface mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg SYSCFG_ETH_MediaInterface_MII: MII mode selected
|
||||
* @arg SYSCFG_ETH_MediaInterface_RMII: RMII mode selected
|
||||
* @retval None
|
||||
*/
|
||||
void SYSCFG_ETH_MediaInterfaceConfig(uint32_t SYSCFG_ETH_MediaInterface)
|
||||
{
|
||||
assert_param(IS_SYSCFG_ETH_MEDIA_INTERFACE(SYSCFG_ETH_MediaInterface));
|
||||
/* Configure MII_RMII selection bit */
|
||||
*(__IO uint32_t *) PMC_MII_RMII_SEL_BB = SYSCFG_ETH_MediaInterface;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables or disables the I/O Compensation Cell.
|
||||
* @note The I/O compensation cell can be used only when the device supply
|
||||
* voltage ranges from 2.4 to 3.6 V.
|
||||
* @param NewState: new state of the I/O Compensation Cell.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg ENABLE: I/O compensation cell enabled
|
||||
* @arg DISABLE: I/O compensation cell power-down mode
|
||||
* @retval None
|
||||
*/
|
||||
void SYSCFG_CompensationCellCmd(FunctionalState NewState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||||
|
||||
*(__IO uint32_t *) CMPCR_CMP_PD_BB = (uint32_t)NewState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks whether the I/O Compensation Cell ready flag is set or not.
|
||||
* @param None
|
||||
* @retval The new state of the I/O Compensation Cell ready flag (SET or RESET)
|
||||
*/
|
||||
FlagStatus SYSCFG_GetCompensationCellStatus(void)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
|
||||
if ((SYSCFG->CMPCR & SYSCFG_CMPCR_READY ) != (uint32_t)RESET)
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
3352
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_tim.c
Executable file
3352
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_tim.c
Executable file
File diff suppressed because it is too large
Load Diff
1463
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_usart.c
Executable file
1463
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_usart.c
Executable file
File diff suppressed because it is too large
Load Diff
303
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_wwdg.c
Executable file
303
source/firmware/arch/stm32f4xx/lib/stdperiph/src/stm32f4xx_wwdg.c
Executable file
@@ -0,0 +1,303 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f4xx_wwdg.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 30-September-2011
|
||||
* @brief This file provides firmware functions to manage the following
|
||||
* functionalities of the Window watchdog (WWDG) peripheral:
|
||||
* - Prescaler, Refresh window and Counter configuration
|
||||
* - WWDG activation
|
||||
* - Interrupts and flags management
|
||||
*
|
||||
* @verbatim
|
||||
*
|
||||
* ===================================================================
|
||||
* WWDG features
|
||||
* ===================================================================
|
||||
*
|
||||
* Once enabled the WWDG generates a system reset on expiry of a programmed
|
||||
* time period, unless the program refreshes the counter (downcounter)
|
||||
* before to reach 0x3F value (i.e. a reset is generated when the counter
|
||||
* value rolls over from 0x40 to 0x3F).
|
||||
* An MCU reset is also generated if the counter value is refreshed
|
||||
* before the counter has reached the refresh window value. This
|
||||
* implies that the counter must be refreshed in a limited window.
|
||||
*
|
||||
* Once enabled the WWDG cannot be disabled except by a system reset.
|
||||
*
|
||||
* WWDGRST flag in RCC_CSR register can be used to inform when a WWDG
|
||||
* reset occurs.
|
||||
*
|
||||
* The WWDG counter input clock is derived from the APB clock divided
|
||||
* by a programmable prescaler.
|
||||
*
|
||||
* WWDG counter clock = PCLK1 / Prescaler
|
||||
* WWDG timeout = (WWDG counter clock) * (counter value)
|
||||
*
|
||||
* Min-max timeout value @42 MHz(PCLK1): ~97.5 us / ~49.9 ms
|
||||
*
|
||||
* ===================================================================
|
||||
* How to use this driver
|
||||
* ===================================================================
|
||||
* 1. Enable WWDG clock using RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG, ENABLE) function
|
||||
*
|
||||
* 2. Configure the WWDG prescaler using WWDG_SetPrescaler() function
|
||||
*
|
||||
* 3. Configure the WWDG refresh window using WWDG_SetWindowValue() function
|
||||
*
|
||||
* 4. Set the WWDG counter value and start it using WWDG_Enable() function.
|
||||
* When the WWDG is enabled the counter value should be configured to
|
||||
* a value greater than 0x40 to prevent generating an immediate reset.
|
||||
*
|
||||
* 5. Optionally you can enable the Early wakeup interrupt which is
|
||||
* generated when the counter reach 0x40.
|
||||
* Once enabled this interrupt cannot be disabled except by a system reset.
|
||||
*
|
||||
* 6. Then the application program must refresh the WWDG counter at regular
|
||||
* intervals during normal operation to prevent an MCU reset, using
|
||||
* WWDG_SetCounter() function. This operation must occur only when
|
||||
* the counter value is lower than the refresh window value,
|
||||
* programmed using WWDG_SetWindowValue().
|
||||
*
|
||||
* @endverbatim
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f4xx_wwdg.h"
|
||||
#include "stm32f4xx_rcc.h"
|
||||
|
||||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup WWDG
|
||||
* @brief WWDG driver modules
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
|
||||
/* ----------- WWDG registers bit address in the alias region ----------- */
|
||||
#define WWDG_OFFSET (WWDG_BASE - PERIPH_BASE)
|
||||
/* Alias word address of EWI bit */
|
||||
#define CFR_OFFSET (WWDG_OFFSET + 0x04)
|
||||
#define EWI_BitNumber 0x09
|
||||
#define CFR_EWI_BB (PERIPH_BB_BASE + (CFR_OFFSET * 32) + (EWI_BitNumber * 4))
|
||||
|
||||
/* --------------------- WWDG registers bit mask ------------------------ */
|
||||
/* CFR register bit mask */
|
||||
#define CFR_WDGTB_MASK ((uint32_t)0xFFFFFE7F)
|
||||
#define CFR_W_MASK ((uint32_t)0xFFFFFF80)
|
||||
#define BIT_MASK ((uint8_t)0x7F)
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup WWDG_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup WWDG_Group1 Prescaler, Refresh window and Counter configuration functions
|
||||
* @brief Prescaler, Refresh window and Counter configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Prescaler, Refresh window and Counter configuration functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the WWDG peripheral registers to their default reset values.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void WWDG_DeInit(void)
|
||||
{
|
||||
RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, ENABLE);
|
||||
RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, DISABLE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets the WWDG Prescaler.
|
||||
* @param WWDG_Prescaler: specifies the WWDG Prescaler.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg WWDG_Prescaler_1: WWDG counter clock = (PCLK1/4096)/1
|
||||
* @arg WWDG_Prescaler_2: WWDG counter clock = (PCLK1/4096)/2
|
||||
* @arg WWDG_Prescaler_4: WWDG counter clock = (PCLK1/4096)/4
|
||||
* @arg WWDG_Prescaler_8: WWDG counter clock = (PCLK1/4096)/8
|
||||
* @retval None
|
||||
*/
|
||||
void WWDG_SetPrescaler(uint32_t WWDG_Prescaler)
|
||||
{
|
||||
uint32_t tmpreg = 0;
|
||||
/* Check the parameters */
|
||||
assert_param(IS_WWDG_PRESCALER(WWDG_Prescaler));
|
||||
/* Clear WDGTB[1:0] bits */
|
||||
tmpreg = WWDG->CFR & CFR_WDGTB_MASK;
|
||||
/* Set WDGTB[1:0] bits according to WWDG_Prescaler value */
|
||||
tmpreg |= WWDG_Prescaler;
|
||||
/* Store the new value */
|
||||
WWDG->CFR = tmpreg;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets the WWDG window value.
|
||||
* @param WindowValue: specifies the window value to be compared to the downcounter.
|
||||
* This parameter value must be lower than 0x80.
|
||||
* @retval None
|
||||
*/
|
||||
void WWDG_SetWindowValue(uint8_t WindowValue)
|
||||
{
|
||||
__IO uint32_t tmpreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_WWDG_WINDOW_VALUE(WindowValue));
|
||||
/* Clear W[6:0] bits */
|
||||
|
||||
tmpreg = WWDG->CFR & CFR_W_MASK;
|
||||
|
||||
/* Set W[6:0] bits according to WindowValue value */
|
||||
tmpreg |= WindowValue & (uint32_t) BIT_MASK;
|
||||
|
||||
/* Store the new value */
|
||||
WWDG->CFR = tmpreg;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables the WWDG Early Wakeup interrupt(EWI).
|
||||
* @note Once enabled this interrupt cannot be disabled except by a system reset.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void WWDG_EnableIT(void)
|
||||
{
|
||||
*(__IO uint32_t *) CFR_EWI_BB = (uint32_t)ENABLE;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets the WWDG counter value.
|
||||
* @param Counter: specifies the watchdog counter value.
|
||||
* This parameter must be a number between 0x40 and 0x7F (to prevent generating
|
||||
* an immediate reset)
|
||||
* @retval None
|
||||
*/
|
||||
void WWDG_SetCounter(uint8_t Counter)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_WWDG_COUNTER(Counter));
|
||||
/* Write to T[6:0] bits to configure the counter value, no need to do
|
||||
a read-modify-write; writing a 0 to WDGA bit does nothing */
|
||||
WWDG->CR = Counter & BIT_MASK;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup WWDG_Group2 WWDG activation functions
|
||||
* @brief WWDG activation functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
WWDG activation function
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables WWDG and load the counter value.
|
||||
* @param Counter: specifies the watchdog counter value.
|
||||
* This parameter must be a number between 0x40 and 0x7F (to prevent generating
|
||||
* an immediate reset)
|
||||
* @retval None
|
||||
*/
|
||||
void WWDG_Enable(uint8_t Counter)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_WWDG_COUNTER(Counter));
|
||||
WWDG->CR = WWDG_CR_WDGA | Counter;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup WWDG_Group3 Interrupts and flags management functions
|
||||
* @brief Interrupts and flags management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
Interrupts and flags management functions
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Checks whether the Early Wakeup interrupt flag is set or not.
|
||||
* @param None
|
||||
* @retval The new state of the Early Wakeup interrupt flag (SET or RESET)
|
||||
*/
|
||||
FlagStatus WWDG_GetFlagStatus(void)
|
||||
{
|
||||
FlagStatus bitstatus = RESET;
|
||||
|
||||
if ((WWDG->SR) != (uint32_t)RESET)
|
||||
{
|
||||
bitstatus = SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears Early Wakeup interrupt flag.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void WWDG_ClearFlag(void)
|
||||
{
|
||||
WWDG->SR = (uint32_t)RESET;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
545
source/firmware/arch/stm32f4xx/lib/stdperiph/src/system_stm32f4xx.c
Executable file
545
source/firmware/arch/stm32f4xx/lib/stdperiph/src/system_stm32f4xx.c
Executable file
@@ -0,0 +1,545 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file system_stm32f4xx.c
|
||||
* @author MCD Application Team
|
||||
* @version V1.0.0
|
||||
* @date 19-September-2011
|
||||
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.
|
||||
* This file contains the system clock configuration for STM32F4xx devices,
|
||||
* and is generated by the clock configuration tool
|
||||
* stm32f4xx_Clock_Configuration_V1.0.0.xls
|
||||
*
|
||||
* 1. This file provides two functions and one global variable to be called from
|
||||
* user application:
|
||||
* - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
|
||||
* and Divider factors, AHB/APBx prescalers and Flash settings),
|
||||
* depending on the configuration made in the clock xls tool.
|
||||
* This function is called at startup just after reset and
|
||||
* before branch to main program. This call is made inside
|
||||
* the "startup_stm32f4xx.s" file.
|
||||
*
|
||||
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
|
||||
* by the user application to setup the SysTick
|
||||
* timer or configure other parameters.
|
||||
*
|
||||
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
|
||||
* be called whenever the core clock is changed
|
||||
* during program execution.
|
||||
*
|
||||
* 2. After each device reset the HSI (16 MHz) is used as system clock source.
|
||||
* Then SystemInit() function is called, in "startup_stm32f4xx.s" file, to
|
||||
* configure the system clock before to branch to main program.
|
||||
*
|
||||
* 3. If the system clock source selected by user fails to startup, the SystemInit()
|
||||
* function will do nothing and HSI still used as system clock source. User can
|
||||
* add some code to deal with this issue inside the SetSysClock() function.
|
||||
*
|
||||
* 4. The default value of HSE crystal is set to 8 MHz, refer to "HSE_VALUE" define
|
||||
* in "stm32f4xx.h" file. When HSE is used as system clock source, directly or
|
||||
* through PLL, and you are using different crystal you have to adapt the HSE
|
||||
* value to your own configuration.
|
||||
*
|
||||
* 5. This file configures the system clock as follows:
|
||||
*=============================================================================
|
||||
*=============================================================================
|
||||
* Supported STM32F4xx device revision | Rev A
|
||||
*-----------------------------------------------------------------------------
|
||||
* System Clock source | PLL (HSE)
|
||||
*-----------------------------------------------------------------------------
|
||||
* SYSCLK(Hz) | 168000000
|
||||
*-----------------------------------------------------------------------------
|
||||
* HCLK(Hz) | 168000000
|
||||
*-----------------------------------------------------------------------------
|
||||
* AHB Prescaler | 1
|
||||
*-----------------------------------------------------------------------------
|
||||
* APB1 Prescaler | 4
|
||||
*-----------------------------------------------------------------------------
|
||||
* APB2 Prescaler | 2
|
||||
*-----------------------------------------------------------------------------
|
||||
* HSE Frequency(Hz) | 8000000
|
||||
*-----------------------------------------------------------------------------
|
||||
* PLL_M | 8
|
||||
*-----------------------------------------------------------------------------
|
||||
* PLL_N | 336
|
||||
*-----------------------------------------------------------------------------
|
||||
* PLL_P | 2
|
||||
*-----------------------------------------------------------------------------
|
||||
* PLL_Q | 7
|
||||
*-----------------------------------------------------------------------------
|
||||
* PLLI2S_N | NA
|
||||
*-----------------------------------------------------------------------------
|
||||
* PLLI2S_R | NA
|
||||
*-----------------------------------------------------------------------------
|
||||
* I2S input clock | NA
|
||||
*-----------------------------------------------------------------------------
|
||||
* VDD(V) | 3.3
|
||||
*-----------------------------------------------------------------------------
|
||||
* High Performance mode | Enabled
|
||||
*-----------------------------------------------------------------------------
|
||||
* Flash Latency(WS) | 5
|
||||
*-----------------------------------------------------------------------------
|
||||
* Prefetch Buffer | OFF
|
||||
*-----------------------------------------------------------------------------
|
||||
* Instruction cache | ON
|
||||
*-----------------------------------------------------------------------------
|
||||
* Data cache | ON
|
||||
*-----------------------------------------------------------------------------
|
||||
* Require 48MHz for USB OTG FS, | Enabled
|
||||
* SDIO and RNG clock |
|
||||
*-----------------------------------------------------------------------------
|
||||
*=============================================================================
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||||
*
|
||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/** @addtogroup CMSIS
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @addtogroup stm32f4xx_system
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @addtogroup STM32F4xx_System_Private_Includes
|
||||
* @{
|
||||
*/
|
||||
|
||||
#include "stm32f4xx.h"
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup STM32F4xx_System_Private_TypesDefinitions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup STM32F4xx_System_Private_Defines
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*!< Uncomment the following line if you need to use external SRAM mounted
|
||||
on STM324xG_EVAL board as data memory */
|
||||
/* #define DATA_IN_ExtSRAM */
|
||||
|
||||
/*!< Uncomment the following line if you need to relocate your vector Table in
|
||||
Internal SRAM. */
|
||||
/* #define VECT_TAB_SRAM */
|
||||
#define VECT_TAB_OFFSET 0x00 /*!< Vector Table base offset field.
|
||||
This value must be a multiple of 0x200. */
|
||||
|
||||
|
||||
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N */
|
||||
#define PLL_M 8
|
||||
#define PLL_N 336
|
||||
|
||||
/* SYSCLK = PLL_VCO / PLL_P */
|
||||
#define PLL_P 2
|
||||
|
||||
/* USB OTG FS, SDIO and RNG Clock = PLL_VCO / PLLQ */
|
||||
#define PLL_Q 7
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup STM32F4xx_System_Private_Macros
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup STM32F4xx_System_Private_Variables
|
||||
* @{
|
||||
*/
|
||||
|
||||
uint32_t SystemCoreClock = 168000000;
|
||||
|
||||
__I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup STM32F4xx_System_Private_FunctionPrototypes
|
||||
* @{
|
||||
*/
|
||||
|
||||
static void SetSysClock(void);
|
||||
#ifdef DATA_IN_ExtSRAM
|
||||
static void SystemInit_ExtMemCtl(void);
|
||||
#endif /* DATA_IN_ExtSRAM */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup STM32F4xx_System_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Setup the microcontroller system
|
||||
* Initialize the Embedded Flash Interface, the PLL and update the
|
||||
* SystemFrequency variable.
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void SystemInit(void)
|
||||
{
|
||||
/* Reset the RCC clock configuration to the default reset state ------------*/
|
||||
/* Set HSION bit */
|
||||
RCC->CR |= (uint32_t)0x00000001;
|
||||
|
||||
/* Reset CFGR register */
|
||||
RCC->CFGR = 0x00000000;
|
||||
|
||||
/* Reset HSEON, CSSON and PLLON bits */
|
||||
RCC->CR &= (uint32_t)0xFEF6FFFF;
|
||||
|
||||
/* Reset PLLCFGR register */
|
||||
RCC->PLLCFGR = 0x24003010;
|
||||
|
||||
/* Reset HSEBYP bit */
|
||||
RCC->CR &= (uint32_t)0xFFFBFFFF;
|
||||
|
||||
/* Disable all interrupts */
|
||||
RCC->CIR = 0x00000000;
|
||||
|
||||
#ifdef DATA_IN_ExtSRAM
|
||||
SystemInit_ExtMemCtl();
|
||||
#endif /* DATA_IN_ExtSRAM */
|
||||
|
||||
/* Configure the System clock source, PLL Multiplier and Divider factors,
|
||||
AHB/APBx prescalers and Flash settings ----------------------------------*/
|
||||
SetSysClock();
|
||||
|
||||
/* Configure the Vector Table location add offset address ------------------*/
|
||||
#ifdef VECT_TAB_SRAM
|
||||
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
|
||||
#else
|
||||
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update SystemCoreClock variable according to Clock Register Values.
|
||||
* The SystemCoreClock variable contains the core clock (HCLK), it can
|
||||
* be used by the user application to setup the SysTick timer or configure
|
||||
* other parameters.
|
||||
*
|
||||
* @note Each time the core clock (HCLK) changes, this function must be called
|
||||
* to update SystemCoreClock variable value. Otherwise, any configuration
|
||||
* based on this variable will be incorrect.
|
||||
*
|
||||
* @note - The system frequency computed by this function is not the real
|
||||
* frequency in the chip. It is calculated based on the predefined
|
||||
* constant and the selected clock source:
|
||||
*
|
||||
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
|
||||
*
|
||||
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
|
||||
*
|
||||
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
|
||||
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
|
||||
*
|
||||
* (*) HSI_VALUE is a constant defined in stm32f4xx.h file (default value
|
||||
* 16 MHz) but the real value may vary depending on the variations
|
||||
* in voltage and temperature.
|
||||
*
|
||||
* (**) HSE_VALUE is a constant defined in stm32f4xx.h file (default value
|
||||
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
|
||||
* frequency of the crystal used. Otherwise, this function may
|
||||
* have wrong result.
|
||||
*
|
||||
* - The result of this function could be not correct when using fractional
|
||||
* value for HSE crystal.
|
||||
*
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void SystemCoreClockUpdate(void)
|
||||
{
|
||||
uint32_t tmp = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2;
|
||||
|
||||
/* Get SYSCLK source -------------------------------------------------------*/
|
||||
tmp = RCC->CFGR & RCC_CFGR_SWS;
|
||||
|
||||
switch (tmp)
|
||||
{
|
||||
case 0x00: /* HSI used as system clock source */
|
||||
SystemCoreClock = HSI_VALUE;
|
||||
break;
|
||||
case 0x04: /* HSE used as system clock source */
|
||||
SystemCoreClock = HSE_VALUE;
|
||||
break;
|
||||
case 0x08: /* PLL used as system clock source */
|
||||
|
||||
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N
|
||||
SYSCLK = PLL_VCO / PLL_P
|
||||
*/
|
||||
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22;
|
||||
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
|
||||
|
||||
if (pllsource != 0)
|
||||
{
|
||||
/* HSE used as PLL clock source */
|
||||
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* HSI used as PLL clock source */
|
||||
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
|
||||
}
|
||||
|
||||
pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2;
|
||||
SystemCoreClock = pllvco/pllp;
|
||||
break;
|
||||
default:
|
||||
SystemCoreClock = HSI_VALUE;
|
||||
break;
|
||||
}
|
||||
/* Compute HCLK frequency --------------------------------------------------*/
|
||||
/* Get HCLK prescaler */
|
||||
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
|
||||
/* HCLK frequency */
|
||||
SystemCoreClock >>= tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configures the System clock source, PLL Multiplier and Divider factors,
|
||||
* AHB/APBx prescalers and Flash settings
|
||||
* @Note This function should be called only once the RCC clock configuration
|
||||
* is reset to the default reset state (done in SystemInit() function).
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
static void SetSysClock(void)
|
||||
{
|
||||
/******************************************************************************/
|
||||
/* PLL (clocked by HSE) used as System clock source */
|
||||
/******************************************************************************/
|
||||
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
|
||||
|
||||
/* Enable HSE */
|
||||
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
|
||||
|
||||
/* Wait till HSE is ready and if Time out is reached exit */
|
||||
do
|
||||
{
|
||||
HSEStatus = RCC->CR & RCC_CR_HSERDY;
|
||||
StartUpCounter++;
|
||||
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
|
||||
|
||||
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
|
||||
{
|
||||
HSEStatus = (uint32_t)0x01;
|
||||
}
|
||||
else
|
||||
{
|
||||
HSEStatus = (uint32_t)0x00;
|
||||
}
|
||||
|
||||
if (HSEStatus == (uint32_t)0x01)
|
||||
{
|
||||
/* Enable high performance mode, System frequency up to 168 MHz */
|
||||
RCC->APB1ENR |= RCC_APB1ENR_PWREN;
|
||||
PWR->CR |= PWR_CR_PMODE;
|
||||
|
||||
/* HCLK = SYSCLK / 1*/
|
||||
RCC->CFGR |= RCC_CFGR_HPRE_DIV1;
|
||||
|
||||
/* PCLK2 = HCLK / 2*/
|
||||
RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;
|
||||
|
||||
/* PCLK1 = HCLK / 4*/
|
||||
RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;
|
||||
|
||||
/* Configure the main PLL */
|
||||
RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |
|
||||
(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);
|
||||
|
||||
/* Enable the main PLL */
|
||||
RCC->CR |= RCC_CR_PLLON;
|
||||
|
||||
/* Wait till the main PLL is ready */
|
||||
while((RCC->CR & RCC_CR_PLLRDY) == 0)
|
||||
{
|
||||
}
|
||||
|
||||
/* Configure Flash prefetch, Instruction cache, Data cache and wait state */
|
||||
FLASH->ACR = FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS;
|
||||
|
||||
/* Select the main PLL as system clock source */
|
||||
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
|
||||
RCC->CFGR |= RCC_CFGR_SW_PLL;
|
||||
|
||||
/* Wait till the main PLL is used as system clock source */
|
||||
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);
|
||||
{
|
||||
}
|
||||
}
|
||||
else
|
||||
{ /* If HSE fails to start-up, the application will have wrong clock
|
||||
configuration. User can add here some code to deal with this error */
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Setup the external memory controller. Called in startup_stm32f4xx.s
|
||||
* before jump to __main
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
#ifdef DATA_IN_ExtSRAM
|
||||
/**
|
||||
* @brief Setup the external memory controller.
|
||||
* Called in startup_stm32f4xx.s before jump to main.
|
||||
* This function configures the external SRAM mounted on STM324xG_EVAL board
|
||||
* This SRAM will be used as program data memory (including heap and stack).
|
||||
* @param None
|
||||
* @retval None
|
||||
*/
|
||||
void SystemInit_ExtMemCtl(void)
|
||||
{
|
||||
/*-- GPIOs Configuration -----------------------------------------------------*/
|
||||
/*
|
||||
+-------------------+--------------------+------------------+------------------+
|
||||
+ SRAM pins assignment +
|
||||
+-------------------+--------------------+------------------+------------------+
|
||||
| PD0 <-> FSMC_D2 | PE0 <-> FSMC_NBL0 | PF0 <-> FSMC_A0 | PG0 <-> FSMC_A10 |
|
||||
| PD1 <-> FSMC_D3 | PE1 <-> FSMC_NBL1 | PF1 <-> FSMC_A1 | PG1 <-> FSMC_A11 |
|
||||
| PD4 <-> FSMC_NOE | PE3 <-> FSMC_A19 | PF2 <-> FSMC_A2 | PG2 <-> FSMC_A12 |
|
||||
| PD5 <-> FSMC_NWE | PE4 <-> FSMC_A20 | PF3 <-> FSMC_A3 | PG3 <-> FSMC_A13 |
|
||||
| PD8 <-> FSMC_D13 | PE7 <-> FSMC_D4 | PF4 <-> FSMC_A4 | PG4 <-> FSMC_A14 |
|
||||
| PD9 <-> FSMC_D14 | PE8 <-> FSMC_D5 | PF5 <-> FSMC_A5 | PG5 <-> FSMC_A15 |
|
||||
| PD10 <-> FSMC_D15 | PE9 <-> FSMC_D6 | PF12 <-> FSMC_A6 | PG9 <-> FSMC_NE2 |
|
||||
| PD11 <-> FSMC_A16 | PE10 <-> FSMC_D7 | PF13 <-> FSMC_A7 |------------------+
|
||||
| PD12 <-> FSMC_A17 | PE11 <-> FSMC_D8 | PF14 <-> FSMC_A8 |
|
||||
| PD13 <-> FSMC_A18 | PE12 <-> FSMC_D9 | PF15 <-> FSMC_A9 |
|
||||
| PD14 <-> FSMC_D0 | PE13 <-> FSMC_D10 |------------------+
|
||||
| PD15 <-> FSMC_D1 | PE14 <-> FSMC_D11 |
|
||||
| | PE15 <-> FSMC_D12 |
|
||||
+-------------------+--------------------+
|
||||
*/
|
||||
/* Enable GPIOD, GPIOE, GPIOF and GPIOG interface clock */
|
||||
RCC->AHB1ENR = 0x00000078;
|
||||
|
||||
/* Connect PDx pins to FSMC Alternate function */
|
||||
GPIOD->AFR[0] = 0x00cc00cc;
|
||||
GPIOD->AFR[1] = 0xcc0ccccc;
|
||||
/* Configure PDx pins in Alternate function mode */
|
||||
GPIOD->MODER = 0xaaaa0a0a;
|
||||
/* Configure PDx pins speed to 100 MHz */
|
||||
GPIOD->OSPEEDR = 0xffff0f0f;
|
||||
/* Configure PDx pins Output type to push-pull */
|
||||
GPIOD->OTYPER = 0x00000000;
|
||||
/* No pull-up, pull-down for PDx pins */
|
||||
GPIOD->PUPDR = 0x00000000;
|
||||
|
||||
/* Connect PEx pins to FSMC Alternate function */
|
||||
GPIOE->AFR[0] = 0xc00cc0cc;
|
||||
GPIOE->AFR[1] = 0xcccccccc;
|
||||
/* Configure PEx pins in Alternate function mode */
|
||||
GPIOE->MODER = 0xaaaa828a;
|
||||
/* Configure PEx pins speed to 100 MHz */
|
||||
GPIOE->OSPEEDR = 0xffffc3cf;
|
||||
/* Configure PEx pins Output type to push-pull */
|
||||
GPIOE->OTYPER = 0x00000000;
|
||||
/* No pull-up, pull-down for PEx pins */
|
||||
GPIOE->PUPDR = 0x00000000;
|
||||
|
||||
/* Connect PFx pins to FSMC Alternate function */
|
||||
GPIOF->AFR[0] = 0x00cccccc;
|
||||
GPIOF->AFR[1] = 0xcccc0000;
|
||||
/* Configure PFx pins in Alternate function mode */
|
||||
GPIOF->MODER = 0xaa000aaa;
|
||||
/* Configure PFx pins speed to 100 MHz */
|
||||
GPIOF->OSPEEDR = 0xff000fff;
|
||||
/* Configure PFx pins Output type to push-pull */
|
||||
GPIOF->OTYPER = 0x00000000;
|
||||
/* No pull-up, pull-down for PFx pins */
|
||||
GPIOF->PUPDR = 0x00000000;
|
||||
|
||||
/* Connect PGx pins to FSMC Alternate function */
|
||||
GPIOG->AFR[0] = 0x00cccccc;
|
||||
GPIOG->AFR[1] = 0x000000c0;
|
||||
/* Configure PGx pins in Alternate function mode */
|
||||
GPIOG->MODER = 0x00080aaa;
|
||||
/* Configure PGx pins speed to 100 MHz */
|
||||
GPIOG->OSPEEDR = 0x000c0fff;
|
||||
/* Configure PGx pins Output type to push-pull */
|
||||
GPIOG->OTYPER = 0x00000000;
|
||||
/* No pull-up, pull-down for PGx pins */
|
||||
GPIOG->PUPDR = 0x00000000;
|
||||
|
||||
/*-- FSMC Configuration ------------------------------------------------------*/
|
||||
/* Enable the FSMC interface clock */
|
||||
RCC->AHB3ENR = 0x00000001;
|
||||
|
||||
/* Configure and enable Bank1_SRAM2 */
|
||||
FSMC_Bank1->BTCR[2] = 0x00001015;
|
||||
FSMC_Bank1->BTCR[3] = 0x00010603;//0x00010400;
|
||||
FSMC_Bank1E->BWTR[2] = 0x0fffffff;
|
||||
/*
|
||||
Bank1_SRAM2 is configured as follow:
|
||||
|
||||
p.FSMC_AddressSetupTime = 3;//0;
|
||||
p.FSMC_AddressHoldTime = 0;
|
||||
p.FSMC_DataSetupTime = 6;//4;
|
||||
p.FSMC_BusTurnAroundDuration = 1;
|
||||
p.FSMC_CLKDivision = 0;
|
||||
p.FSMC_DataLatency = 0;
|
||||
p.FSMC_AccessMode = FSMC_AccessMode_A;
|
||||
|
||||
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM2;
|
||||
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_PSRAM;
|
||||
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
|
||||
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
|
||||
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
|
||||
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
|
||||
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
|
||||
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
|
||||
*/
|
||||
|
||||
}
|
||||
#endif /* DATA_IN_ExtSRAM */
|
||||
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|
||||
|
Reference in New Issue
Block a user