stm32g0xx/Drivers/STM32G0xx_HAL_Driver/Inc/stm32g0xx_hal_rcc.h

3112 lines
175 KiB
C
Raw Permalink Normal View History

/**
******************************************************************************
* @file stm32g0xx_hal_rcc.h
* @author MCD Application Team
* @brief Header file of RCC HAL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2018 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32G0xx_HAL_RCC_H
#define STM32G0xx_HAL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal_def.h"
#include "stm32g0xx_ll_rcc.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @addtogroup RCC
* @{
*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup RCC_Private_Constants
* @{
*/
/* Defines used for Flags */
#define CR_REG_INDEX 1U
#define BDCR_REG_INDEX 2U
#define CSR_REG_INDEX 3U
#if defined(RCC_HSI48_SUPPORT)
#define CRRCR_REG_INDEX 4U
#endif /* RCC_HSI48_SUPPORT */
#define RCC_FLAG_MASK 0x1FU
/* Define used for IS_RCC_CLOCKTYPE() */
#define RCC_CLOCKTYPE_ALL (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1) /*!< All clocktype to configure */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_Private_Macros
* @{
*/
#if defined(RCC_HSI48_SUPPORT)
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) \
(((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
#else
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) \
(((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
#endif /* RCC_HSI48_SUPPORT */
#define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || \
((__HSE__) == RCC_HSE_BYPASS))
#define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \
((__LSE__) == RCC_LSE_BYPASS))
#define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON))
#if defined(RCC_HSI48_SUPPORT)
#define IS_RCC_HSI48(__HSI48__) (((__HSI48__) == RCC_HSI48_OFF) || ((__HSI48__) == RCC_HSI48_ON))
#endif /* RCC_HSI48_SUPPORT */
#define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= (uint32_t)127U)
#define IS_RCC_HSIDIV(__DIV__) (((__DIV__) == RCC_HSI_DIV1) || ((__DIV__) == RCC_HSI_DIV2) || \
((__DIV__) == RCC_HSI_DIV4) || ((__DIV__) == RCC_HSI_DIV8) || \
((__DIV__) == RCC_HSI_DIV16) || ((__DIV__) == RCC_HSI_DIV32)|| \
((__DIV__) == RCC_HSI_DIV64) || ((__DIV__) == RCC_HSI_DIV128))
#define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON))
#define IS_RCC_PLL(__PLL__) (((__PLL__) == RCC_PLL_NONE) ||((__PLL__) == RCC_PLL_OFF) || \
((__PLL__) == RCC_PLL_ON))
#define IS_RCC_PLLSOURCE(__SOURCE__) (((__SOURCE__) == RCC_PLLSOURCE_NONE) || \
((__SOURCE__) == RCC_PLLSOURCE_HSI) || \
((__SOURCE__) == RCC_PLLSOURCE_HSE))
#define IS_RCC_PLLM_VALUE(__VALUE__) ((__VALUE__) <= RCC_PLLM_DIV8)
#define IS_RCC_PLLN_VALUE(__VALUE__) ((8U <= (__VALUE__)) && ((__VALUE__) <= 86U))
#define IS_RCC_PLLP_VALUE(__VALUE__) ((RCC_PLLP_DIV2 <= (__VALUE__)) && ((__VALUE__) <= RCC_PLLP_DIV32))
#if defined(RCC_PLLQ_SUPPORT)
#define IS_RCC_PLLQ_VALUE(__VALUE__) ((RCC_PLLQ_DIV2 <= (__VALUE__)) && ((__VALUE__) <= RCC_PLLQ_DIV8))
#endif /* RCC_PLLQ_SUPPORT */
#define IS_RCC_PLLR_VALUE(__VALUE__) ((RCC_PLLR_DIV2 <= (__VALUE__)) && ((__VALUE__) <= RCC_PLLR_DIV8))
#define IS_RCC_CLOCKTYPE(__CLK__) ((((__CLK__) & RCC_CLOCKTYPE_ALL) != 0x00UL) && (((__CLK__) & ~RCC_CLOCKTYPE_ALL) == 0x00UL))
#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_PLLCLK))
#define IS_RCC_HCLK(__HCLK__) (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || \
((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || \
((__HCLK__) == RCC_SYSCLK_DIV16) || ((__HCLK__) == RCC_SYSCLK_DIV64) || \
((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || \
((__HCLK__) == RCC_SYSCLK_DIV512))
#define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || \
((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || \
((__PCLK__) == RCC_HCLK_DIV16))
#define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NONE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV32))
#if defined(RCC_MCO2_SUPPORT)
#define IS_RCC_MCO(__MCOX__) ( ((__MCOX__) == RCC_MCO1) || ((__MCOX__) == RCC_MCO2) )
#else
#define IS_RCC_MCO(__MCOX__) ((__MCOX__) == RCC_MCO1)
#endif /* RCC_MCO2_SUPPORT */
#if defined(STM32G0C1xx) || defined(STM32G0B1xx)
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI48) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLPCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLQCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_RTCCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_RTC_WKUP))
#elif defined(STM32G0B0xx)
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLPCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLQCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_RTCCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_RTC_WKUP))
#else
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE))
#endif /* STM32G0C1xx || STM32G0B1xx */
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \
((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \
((__DIV__) == RCC_MCODIV_16) || ((__DIV__) == RCC_MCODIV_32) || \
((__DIV__) == RCC_MCODIV_64) || ((__DIV__) == RCC_MCODIV_128) || \
((__DIV__) == RCC_MCODIV_256)|| ((__DIV__) == RCC_MCODIV_512) || \
((__DIV__) == RCC_MCODIV_1024))
#else
#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \
((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \
((__DIV__) == RCC_MCODIV_16) || ((__DIV__) == RCC_MCODIV_32) || \
((__DIV__) == RCC_MCODIV_64) || ((__DIV__) == RCC_MCODIV_128))
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx */
#if defined(RCC_MCO2_SUPPORT)
#if defined(RCC_HSI48_SUPPORT)
#define IS_RCC_MCO2SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO2SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO2SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSI48) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO2SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSE) || \
((__SOURCE__) == RCC_MCO2SOURCE_PLLPCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_PLLQCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_RTCCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_RTC_WKUP))
#else
#define IS_RCC_MCO2SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO2SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO2SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO2SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSE) || \
((__SOURCE__) == RCC_MCO2SOURCE_PLLPCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_PLLQCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_RTCCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_RTC_WKUP))
#endif /* RCC_HSI48_SUPPORT */
#define IS_RCC_MCO2DIV(__DIV__) (((__DIV__) == RCC_MCO2DIV_1) || ((__DIV__) == RCC_MCO2DIV_2) || \
((__DIV__) == RCC_MCO2DIV_4) || ((__DIV__) == RCC_MCO2DIV_8) || \
((__DIV__) == RCC_MCO2DIV_16) || ((__DIV__) == RCC_MCO2DIV_32) || \
((__DIV__) == RCC_MCO2DIV_64) || ((__DIV__) == RCC_MCO2DIV_128)|| \
((__DIV__) == RCC_MCO2DIV_256)|| ((__DIV__) == RCC_MCO2DIV_512)|| \
((__DIV__) == RCC_MCO2DIV_1024))
#endif /* RCC_MCO2_SUPPORT */
#define IS_RCC_LSE_DRIVE(__DRIVE__) (((__DRIVE__) == RCC_LSEDRIVE_LOW) || \
((__DRIVE__) == RCC_LSEDRIVE_MEDIUMLOW) || \
((__DRIVE__) == RCC_LSEDRIVE_MEDIUMHIGH) || \
((__DRIVE__) == RCC_LSEDRIVE_HIGH))
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup RCC_Exported_Types RCC Exported Types
* @{
*/
/**
* @brief RCC PLL configuration structure definition
*/
typedef struct
{
uint32_t PLLState; /*!< The new state of the PLL.
This parameter can be a value of @ref RCC_PLL_Config */
uint32_t PLLSource; /*!< RCC_PLLSource: PLL entry clock source.
This parameter must be a value of @ref RCC_PLL_Clock_Source */
uint32_t PLLM; /*!< PLLM: Division factor for PLL VCO input clock.
This parameter must be a value of @ref RCC_PLLM_Clock_Divider */
uint32_t PLLN; /*!< PLLN: Multiplication factor for PLL VCO output clock.
This parameter must be a number between Min_Data = 8 and Max_Data = 86 */
uint32_t PLLP; /*!< PLLP: PLL Division factor.
User have to set the PLLQ parameter correctly to not exceed max frequency 64MHZ.
This parameter must be a value of @ref RCC_PLLP_Clock_Divider */
#if defined(RCC_PLLQ_SUPPORT)
uint32_t PLLQ; /*!< PLLQ: PLL Division factor.
User have to set the PLLQ parameter correctly to not exceed max frequency 64MHZ.
This parameter must be a value of @ref RCC_PLLQ_Clock_Divider */
#endif /* RCC_PLLQ_SUPPORT */
uint32_t PLLR; /*!< PLLR: PLL Division for the main system clock.
User have to set the PLLR parameter correctly to not exceed max frequency 64MHZ.
This parameter must be a value of @ref RCC_PLLR_Clock_Divider */
} RCC_PLLInitTypeDef;
/**
* @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition
*/
typedef struct
{
uint32_t OscillatorType; /*!< The oscillators to be configured.
This parameter can be a value of @ref RCC_Oscillator_Type */
uint32_t HSEState; /*!< The new state of the HSE.
This parameter can be a value of @ref RCC_HSE_Config */
uint32_t LSEState; /*!< The new state of the LSE.
This parameter can be a value of @ref RCC_LSE_Config */
uint32_t HSIState; /*!< The new state of the HSI.
This parameter can be a value of @ref RCC_HSI_Config */
uint32_t HSIDiv; /*!< The division factor of the HSI16.
This parameter can be a value of @ref RCC_HSI_Div */
uint32_t HSICalibrationValue; /*!< The calibration trimming value (default is RCC_HSICALIBRATION_DEFAULT).
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x7F */
uint32_t LSIState; /*!< The new state of the LSI.
This parameter can be a value of @ref RCC_LSI_Config */
#if defined(RCC_HSI48_SUPPORT)
uint32_t HSI48State; /*!< The new state of the HSI48 (only applicable to STM32G0C1xx/STM32G0B1xx/STM32G0B0xx devices).
This parameter can be a value of @ref RCC_HSI48_Config */
#endif /* RCC_HSI48_SUPPORT */
RCC_PLLInitTypeDef PLL; /*!< Main PLL structure parameters */
} RCC_OscInitTypeDef;
/**
* @brief RCC System, AHB and APB buses clock configuration structure definition
*/
typedef struct
{
uint32_t ClockType; /*!< The clock to be configured.
This parameter can be a combination of @ref RCC_System_Clock_Type */
uint32_t SYSCLKSource; /*!< The clock source used as system clock (SYSCLK).
This parameter can be a value of @ref RCC_System_Clock_Source */
uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_AHB_Clock_Source */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_APB1_Clock_Source */
} RCC_ClkInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_Timeout_Value Timeout Values
* @{
*/
#define RCC_DBP_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
#define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT /* LSE timeout in ms */
/**
* @}
*/
/** @defgroup RCC_Oscillator_Type Oscillator Type
* @{
*/
#define RCC_OSCILLATORTYPE_NONE 0x00000000U /*!< Oscillator configuration unchanged */
#define RCC_OSCILLATORTYPE_HSE 0x00000001U /*!< HSE to configure */
#define RCC_OSCILLATORTYPE_HSI 0x00000002U /*!< HSI to configure */
#define RCC_OSCILLATORTYPE_LSE 0x00000004U /*!< LSE to configure */
#define RCC_OSCILLATORTYPE_LSI 0x00000008U /*!< LSI to configure */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_OSCILLATORTYPE_HSI48 0x00000020U /*!< HSI48 to configure */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_HSE_Config HSE Config
* @{
*/
#define RCC_HSE_OFF 0x00000000U /*!< HSE clock deactivation */
#define RCC_HSE_ON RCC_CR_HSEON /*!< HSE clock activation */
#define RCC_HSE_BYPASS (RCC_CR_HSEBYP | RCC_CR_HSEON) /*!< External clock source for HSE clock */
/**
* @}
*/
/** @defgroup RCC_LSE_Config LSE Config
* @{
*/
#define RCC_LSE_OFF 0x00000000U /*!< LSE clock deactivation */
#define RCC_LSE_ON RCC_BDCR_LSEON /*!< LSE clock activation */
#define RCC_LSE_BYPASS (RCC_BDCR_LSEBYP | RCC_BDCR_LSEON) /*!< External clock source for LSE clock */
/**
* @}
*/
/** @defgroup RCC_HSI_Config HSI Config
* @{
*/
#define RCC_HSI_OFF 0x00000000U /*!< HSI clock deactivation */
#define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */
#define RCC_HSICALIBRATION_DEFAULT 64U /*!< Default HSI calibration trimming value */
/**
* @}
*/
/** @defgroup RCC_HSI_Div HSI Div
* @{
*/
#define RCC_HSI_DIV1 0x00000000U /*!< HSI clock is not divided */
#define RCC_HSI_DIV2 RCC_CR_HSIDIV_0 /*!< HSI clock is divided by 2 */
#define RCC_HSI_DIV4 RCC_CR_HSIDIV_1 /*!< HSI clock is divided by 4 */
#define RCC_HSI_DIV8 (RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 8 */
#define RCC_HSI_DIV16 RCC_CR_HSIDIV_2 /*!< HSI clock is divided by 16 */
#define RCC_HSI_DIV32 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 32 */
#define RCC_HSI_DIV64 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1) /*!< HSI clock is divided by 64 */
#define RCC_HSI_DIV128 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 128 */
/**
* @}
*/
/** @defgroup RCC_LSI_Config LSI Config
* @{
*/
#define RCC_LSI_OFF 0x00000000U /*!< LSI clock deactivation */
#define RCC_LSI_ON RCC_CSR_LSION /*!< LSI clock activation */
/**
* @}
*/
#if defined(RCC_HSI48_SUPPORT)
/** @defgroup RCC_HSI48_Config HSI48 Config
* @{
*/
#define RCC_HSI48_OFF 0x00000000U /*!< HSI48 clock deactivation */
#define RCC_HSI48_ON RCC_CR_HSI48ON /*!< HSI48 clock activation */
/**
* @}
*/
#endif /* RCC_HSI48_SUPPORT */
/** @defgroup RCC_PLL_Config PLL Config
* @{
*/
#define RCC_PLL_NONE 0x00000000U /*!< PLL configuration unchanged */
#define RCC_PLL_OFF 0x00000001U /*!< PLL deactivation */
#define RCC_PLL_ON 0x00000002U /*!< PLL activation */
/**
* @}
*/
/** @defgroup RCC_PLLM_Clock_Divider PLLM Clock Divider
* @{
*/
#define RCC_PLLM_DIV1 0x00000000U /*!< PLLM division factor = 8 */
#define RCC_PLLM_DIV2 RCC_PLLCFGR_PLLM_0 /*!< PLLM division factor = 2 */
#define RCC_PLLM_DIV3 RCC_PLLCFGR_PLLM_1 /*!< PLLM division factor = 3 */
#define RCC_PLLM_DIV4 (RCC_PLLCFGR_PLLM_1 | RCC_PLLCFGR_PLLM_0) /*!< PLLM division factor = 4 */
#define RCC_PLLM_DIV5 RCC_PLLCFGR_PLLM_2 /*!< PLLM division factor = 5 */
#define RCC_PLLM_DIV6 (RCC_PLLCFGR_PLLM_2 | RCC_PLLCFGR_PLLM_0) /*!< PLLM division factor = 6 */
#define RCC_PLLM_DIV7 (RCC_PLLCFGR_PLLM_2 | RCC_PLLCFGR_PLLM_1) /*!< PLLM division factor = 7 */
#define RCC_PLLM_DIV8 (RCC_PLLCFGR_PLLM_2 | RCC_PLLCFGR_PLLM_1| RCC_PLLCFGR_PLLM_0) /*!< PLLM division factor = 8 */
/**
* @}
*/
/** @defgroup RCC_PLLP_Clock_Divider PLLP Clock Divider
* @{
*/
#define RCC_PLLP_DIV2 RCC_PLLCFGR_PLLP_0 /*!< PLLP division factor = 2 */
#define RCC_PLLP_DIV3 RCC_PLLCFGR_PLLP_1 /*!< PLLP division factor = 3 */
#define RCC_PLLP_DIV4 (RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 4 */
#define RCC_PLLP_DIV5 RCC_PLLCFGR_PLLP_2 /*!< PLLP division factor = 5 */
#define RCC_PLLP_DIV6 (RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 6 */
#define RCC_PLLP_DIV7 (RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1) /*!< PLLP division factor = 7 */
#define RCC_PLLP_DIV8 (RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 8 */
#define RCC_PLLP_DIV9 RCC_PLLCFGR_PLLP_3 /*!< PLLP division factor = 9 */
#define RCC_PLLP_DIV10 (RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 10 */
#define RCC_PLLP_DIV11 (RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_1) /*!< PLLP division factor = 11 */
#define RCC_PLLP_DIV12 (RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 12 */
#define RCC_PLLP_DIV13 (RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2) /*!< PLLP division factor = 13 */
#define RCC_PLLP_DIV14 (RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 14 */
#define RCC_PLLP_DIV15 (RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1) /*!< PLLP division factor = 15 */
#define RCC_PLLP_DIV16 (RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 16 */
#define RCC_PLLP_DIV17 RCC_PLLCFGR_PLLP_4 /*!< PLLP division factor = 17 */
#define RCC_PLLP_DIV18 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 18 */
#define RCC_PLLP_DIV19 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_1) /*!< PLLP division factor = 19 */
#define RCC_PLLP_DIV20 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 20 */
#define RCC_PLLP_DIV21 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_2) /*!< PLLP division factor = 21 */
#define RCC_PLLP_DIV22 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 22 */
#define RCC_PLLP_DIV23 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1) /*!< PLLP division factor = 23 */
#define RCC_PLLP_DIV24 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 24 */
#define RCC_PLLP_DIV25 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3) /*!< PLLP division factor = 25 */
#define RCC_PLLP_DIV26 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 26 */
#define RCC_PLLP_DIV27 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_1) /*!< PLLP division factor = 27 */
#define RCC_PLLP_DIV28 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 28 */
#define RCC_PLLP_DIV29 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2) /*!< PLLP division factor = 29 */
#define RCC_PLLP_DIV30 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 30 */
#define RCC_PLLP_DIV31 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1) /*!< PLLP division factor = 31 */
#define RCC_PLLP_DIV32 (RCC_PLLCFGR_PLLP_4 | RCC_PLLCFGR_PLLP_3 | RCC_PLLCFGR_PLLP_2 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLP_0) /*!< PLLP division factor = 32 */
/**
* @}
*/
#if defined(RCC_PLLQ_SUPPORT)
/** @defgroup RCC_PLLQ_Clock_Divider PLLQ Clock Divider
* @{
*/
#define RCC_PLLQ_DIV2 RCC_PLLCFGR_PLLQ_0 /*!< PLLQ division factor = 2 */
#define RCC_PLLQ_DIV3 RCC_PLLCFGR_PLLQ_1 /*!< PLLQ division factor = 3 */
#define RCC_PLLQ_DIV4 (RCC_PLLCFGR_PLLQ_1 | RCC_PLLCFGR_PLLQ_0) /*!< PLLQ division factor = 4 */
#define RCC_PLLQ_DIV5 RCC_PLLCFGR_PLLQ_2 /*!< PLLQ division factor = 5 */
#define RCC_PLLQ_DIV6 (RCC_PLLCFGR_PLLQ_2 | RCC_PLLCFGR_PLLQ_0) /*!< PLLQ division factor = 6 */
#define RCC_PLLQ_DIV7 (RCC_PLLCFGR_PLLQ_2 | RCC_PLLCFGR_PLLQ_1) /*!< PLLQ division factor = 7 */
#define RCC_PLLQ_DIV8 (RCC_PLLCFGR_PLLQ_2 |RCC_PLLCFGR_PLLQ_1 | RCC_PLLCFGR_PLLQ_0) /*!< PLLQ division factor = 8 */
/** * @}
*/
#endif /* RCC_PLLQ_SUPPORT */
/** @defgroup RCC_PLLR_Clock_Divider PLLR Clock Divider
* @{
*/
#define RCC_PLLR_DIV2 RCC_PLLCFGR_PLLR_0 /*!< PLLR division factor = 2 */
#define RCC_PLLR_DIV3 RCC_PLLCFGR_PLLR_1 /*!< PLLR division factor = 3 */
#define RCC_PLLR_DIV4 (RCC_PLLCFGR_PLLR_1 | RCC_PLLCFGR_PLLR_0) /*!< PLLR division factor = 4 */
#define RCC_PLLR_DIV5 RCC_PLLCFGR_PLLR_2 /*!< PLLR division factor = 5 */
#define RCC_PLLR_DIV6 (RCC_PLLCFGR_PLLR_2 | RCC_PLLCFGR_PLLR_0) /*!< PLLR division factor = 6 */
#define RCC_PLLR_DIV7 (RCC_PLLCFGR_PLLR_2 | RCC_PLLCFGR_PLLR_1) /*!< PLLR division factor = 7 */
#define RCC_PLLR_DIV8 (RCC_PLLCFGR_PLLR_2 | RCC_PLLCFGR_PLLR_1 | RCC_PLLCFGR_PLLR_0) /*!< PLLR division factor = 8 */
/** * @}
*/
/** @defgroup RCC_PLL_Clock_Source PLL Clock Source
* @{
*/
#define RCC_PLLSOURCE_NONE 0x00000000U /*!< No clock selected as PLL entry clock source */
#define RCC_PLLSOURCE_HSI RCC_PLLCFGR_PLLSRC_HSI /*!< HSI clock selected as PLL entry clock source */
#define RCC_PLLSOURCE_HSE RCC_PLLCFGR_PLLSRC_HSE /*!< HSE clock selected as PLL entry clock source */
/**
* @}
*/
/** @defgroup RCC_PLL_Clock_Output PLL Clock Output
* @{
*/
#define RCC_PLLPCLK RCC_PLLCFGR_PLLPEN /*!< PLLPCLK selection from main PLL */
#if defined(RCC_PLLQ_SUPPORT)
#define RCC_PLLQCLK RCC_PLLCFGR_PLLQEN /*!< PLLQCLK selection from main PLL */
#endif /* RCC_PLLQ_SUPPORT */
#define RCC_PLLRCLK RCC_PLLCFGR_PLLREN /*!< PLLRCLK selection from main PLL */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Type System Clock Type
* @{
*/
#define RCC_CLOCKTYPE_SYSCLK 0x00000001U /*!< SYSCLK to configure */
#define RCC_CLOCKTYPE_HCLK 0x00000002U /*!< HCLK to configure */
#define RCC_CLOCKTYPE_PCLK1 0x00000004U /*!< PCLK1 to configure */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source System Clock Source
* @{
*/
#define RCC_SYSCLKSOURCE_HSI 0x00000000U /*!< HSI selection as system clock */
#define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_0 /*!< HSE selection as system clock */
#define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_1 /*!< PLL selection as system clock */
#define RCC_SYSCLKSOURCE_LSI (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< LSI selection as system clock */
#define RCC_SYSCLKSOURCE_LSE RCC_CFGR_SW_2 /*!< LSE selection as system clock */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source_Status System Clock Source Status
* @{
*/
#define RCC_SYSCLKSOURCE_STATUS_HSI 0x00000000U /*!< HSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_0 /*!< HSE used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_1 /*!< PLL used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_LSI (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< LSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_LSE RCC_CFGR_SWS_2 /*!< LSE used as system clock */
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Source AHB Clock Source
* @{
*/
#define RCC_SYSCLK_DIV1 0x00000000U /*!< SYSCLK not divided */
#define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */
#define RCC_SYSCLK_DIV4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */
#define RCC_SYSCLK_DIV8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */
#define RCC_SYSCLK_DIV16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */
#define RCC_SYSCLK_DIV64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */
#define RCC_SYSCLK_DIV128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */
#define RCC_SYSCLK_DIV256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */
#define RCC_SYSCLK_DIV512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Source APB Clock Source
* @{
*/
#define RCC_HCLK_DIV1 0x00000000U /*!< HCLK not divided */
#define RCC_HCLK_DIV2 RCC_CFGR_PPRE_2 /*!< HCLK divided by 2 */
#define RCC_HCLK_DIV4 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 4 */
#define RCC_HCLK_DIV8 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1) /*!< HCLK divided by 8 */
#define RCC_HCLK_DIV16 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1 | RCC_CFGR_PPRE_0) /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Source RTC Clock Source
* @{
*/
#define RCC_RTCCLKSOURCE_NONE 0x00000000U /*!< No clock configured for RTC */
#define RCC_RTCCLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */
#define RCC_RTCCLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */
#define RCC_RTCCLKSOURCE_HSE_DIV32 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 32 used as RTC clock */
/**
* @}
*/
/** @defgroup RCC_MCO_Index MCO Index
* @{
*/
#define RCC_MCO1 0x00000000U
#if defined(RCC_MCO2_SUPPORT)
#define RCC_MCO2 0x00000001U /*!< MCO2 index */
#endif /* RCC_MCO2_SUPPORT */
#define RCC_MCO RCC_MCO1 /*!< MCO1 to be compliant with other families with 2 MCOs*/
/**
* @}
*/
/** @defgroup RCC_MCO1_Clock_Source MCO1 Clock Source
* @{
*/
#define RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO1 output disabled, no clock on MCO1 */
#define RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_MCO1SOURCE_HSI48 RCC_CFGR_MCOSEL_1 /*!< HSI48 selection as MCO1 source */
#endif /* RCC_HSI48_SUPPORT */
#define RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */
#define RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO1 source */
#define RCC_MCO1SOURCE_PLLCLK (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_2) /*!< PLLCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */
#define RCC_MCO1SOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO1 source */
#if defined(RCC_CFGR_MCOSEL_3)
#define RCC_MCO1SOURCE_PLLPCLK RCC_CFGR_MCOSEL_3 /*!< PLLPCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_PLLQCLK (RCC_CFGR_MCOSEL_3|RCC_CFGR_MCOSEL_0) /*!< PLLQCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_RTCCLK (RCC_CFGR_MCOSEL_3|RCC_CFGR_MCOSEL_1) /*!< RTCCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_RTC_WKUP (RCC_CFGR_MCOSEL_3|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_0) /*!< RTC_Wakeup selection as MCO1 source */
#endif /* RCC_CFGR_MCOSEL_3 */
/**
* @}
*/
/** @defgroup RCC_MCO1_Clock_Prescaler MCO1 Clock Prescaler
* @{
*/
#define RCC_MCODIV_1 0x00000000U /*!< MCO not divided */
#define RCC_MCODIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO divided by 2 */
#define RCC_MCODIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO divided by 4 */
#define RCC_MCODIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 8 */
#define RCC_MCODIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO divided by 16 */
#define RCC_MCODIV_32 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 32 */
#define RCC_MCODIV_64 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1) /*!< MCO divided by 64 */
#define RCC_MCODIV_128 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 128 */
#if defined(RCC_CFGR_MCOPRE_3)
#define RCC_MCODIV_256 RCC_CFGR_MCOPRE_3 /*!< MCO divided by 256 */
#define RCC_MCODIV_512 (RCC_CFGR_MCOPRE_3 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 512 */
#define RCC_MCODIV_1024 (RCC_CFGR_MCOPRE_3 | RCC_CFGR_MCOPRE_1) /*!< MCO divided by 1024 */
#endif /* RCC_CFGR_MCOSEL_3 */
/**
* @}
*/
#if defined(RCC_MCO2_SUPPORT)
/** @defgroup RCC_MCO2_Clock_Source MCO2 Clock Source
* @{
*/
#define RCC_MCO2SOURCE_NOCLOCK 0x00000000U /*!< MCO2 output disabled, no clock on MCO2 */
#define RCC_MCO2SOURCE_SYSCLK RCC_CFGR_MCO2SEL_0 /*!< SYSCLK selection as MCO2 source */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_MCO2SOURCE_HSI48 RCC_CFGR_MCO2SEL_1 /*!< HSI48 selection as MCO2 source */
#endif /* RCC_HSI48_SUPPORT */
#define RCC_MCO2SOURCE_HSI (RCC_CFGR_MCO2SEL_1| RCC_CFGR_MCO2SEL_0) /*!< HSI selection as MCO2 source */
#define RCC_MCO2SOURCE_HSE RCC_CFGR_MCO2SEL_2 /*!< HSE selection as MCO2 source */
#define RCC_MCO2SOURCE_PLLCLK (RCC_CFGR_MCO2SEL_2|RCC_CFGR_MCO2SEL_0) /*!< PLLCLK selection as MCO2 source */
#define RCC_MCO2SOURCE_LSI (RCC_CFGR_MCO2SEL_2|RCC_CFGR_MCO2SEL_1) /*!< LSI selection as MCO2 source */
#define RCC_MCO2SOURCE_LSE (RCC_CFGR_MCO2SEL_2|RCC_CFGR_MCO2SEL_1|RCC_CFGR_MCO2SEL_0) /*!< LSE selection as MCO2 source */
#define RCC_MCO2SOURCE_PLLPCLK RCC_CFGR_MCO2SEL_3 /*!< PLLPCLK selection as MCO2 source */
#define RCC_MCO2SOURCE_PLLQCLK (RCC_CFGR_MCO2SEL_3|RCC_CFGR_MCO2SEL_0) /*!< PLLQCLK selection as MCO2 source */
#define RCC_MCO2SOURCE_RTCCLK (RCC_CFGR_MCO2SEL_3|RCC_CFGR_MCO2SEL_1) /*!< RTCCLK selection as MCO2 source */
#define RCC_MCO2SOURCE_RTC_WKUP (RCC_CFGR_MCO2SEL_3|RCC_CFGR_MCO2SEL_1|RCC_CFGR_MCO2SEL_0) /*!< RTC_Wakeup selection as MCO2 source */
/**
* @}
*/
/** @defgroup RCC_MCO2_Clock_Prescaler MCO2 Clock Prescaler
* @{
*/
#define RCC_MCO2DIV_1 0x00000000U /*!< MCO2 not divided */
#define RCC_MCO2DIV_2 RCC_CFGR_MCO2PRE_0 /*!< MCO2 divided by 2 */
#define RCC_MCO2DIV_4 RCC_CFGR_MCO2PRE_1 /*!< MCO2 divided by 4 */
#define RCC_MCO2DIV_8 (RCC_CFGR_MCO2PRE_1 | RCC_CFGR_MCO2PRE_0) /*!< MCO2 divided by 8 */
#define RCC_MCO2DIV_16 RCC_CFGR_MCO2PRE_2 /*!< MCO2 divided by 16 */
#define RCC_MCO2DIV_32 (RCC_CFGR_MCO2PRE_2 | RCC_CFGR_MCO2PRE_0) /*!< MCO2 divided by 32 */
#define RCC_MCO2DIV_64 (RCC_CFGR_MCO2PRE_2 | RCC_CFGR_MCO2PRE_1) /*!< MCO2 divided by 64 */
#define RCC_MCO2DIV_128 (RCC_CFGR_MCO2PRE_2 | RCC_CFGR_MCO2PRE_1 | RCC_CFGR_MCO2PRE_0) /*!< MCO2 divided by 128 */
#define RCC_MCO2DIV_256 RCC_CFGR_MCO2PRE_3 /*!< MCO2 divided by 256 */
#define RCC_MCO2DIV_512 (RCC_CFGR_MCO2PRE_3 | RCC_CFGR_MCO2PRE_0) /*!< MCO2 divided by 512 */
#define RCC_MCO2DIV_1024 (RCC_CFGR_MCO2PRE_3 | RCC_CFGR_MCO2PRE_1) /*!< MCO2 divided by 1024 */
/**
* @}
*/
#endif /* RCC_MCO2_SUPPORT */
/** @defgroup RCC_Interrupt Interrupts
* @{
*/
#define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define RCC_IT_LSERDY RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */
#define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */
#define RCC_IT_HSERDY RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */
#define RCC_IT_PLLRDY RCC_CIFR_PLLRDYF /*!< PLL Ready Interrupt flag */
#define RCC_IT_CSS RCC_CIFR_CSSF /*!< HSE Clock Security System Interrupt flag */
#define RCC_IT_LSECSS RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_IT_HSI48RDY RCC_CIFR_HSI48RDYF /*!< HSI48 Ready Interrupt flag */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_Flag Flags
* Elements values convention: XXXYYYYYb
* - YYYYY : Flag position in the register
* - XXX : Register index
* - 001: CR register
* - 010: BDCR register
* - 011: CSR register
* @{
*/
/* Flags in the CR register */
#define RCC_FLAG_HSIRDY ((CR_REG_INDEX << 5U) | RCC_CR_HSIRDY_Pos) /*!< HSI Ready flag */
#define RCC_FLAG_HSERDY ((CR_REG_INDEX << 5U) | RCC_CR_HSERDY_Pos) /*!< HSE Ready flag */
#define RCC_FLAG_PLLRDY ((CR_REG_INDEX << 5U) | RCC_CR_PLLRDY_Pos) /*!< PLL Ready flag */
/* Flags in the BDCR register */
#define RCC_FLAG_LSERDY ((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSERDY_Pos) /*!< LSE Ready flag */
#define RCC_FLAG_LSECSSD ((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSECSSD_Pos) /*!< LSE Clock Security System Interrupt flag */
/* Flags in the CSR register */
#define RCC_FLAG_LSIRDY ((CSR_REG_INDEX << 5U) | RCC_CSR_LSIRDY_Pos) /*!< LSI Ready flag */
#define RCC_FLAG_OBLRST ((CSR_REG_INDEX << 5U) | RCC_CSR_OBLRSTF_Pos) /*!< Option Byte Loader reset flag */
#define RCC_FLAG_PINRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PINRSTF_Pos) /*!< PIN reset flag */
#define RCC_FLAG_PWRRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PWRRSTF_Pos) /*!< BOR or POR/PDR reset flag */
#define RCC_FLAG_SFTRST ((CSR_REG_INDEX << 5U) | RCC_CSR_SFTRSTF_Pos) /*!< Software Reset flag */
#define RCC_FLAG_IWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_IWDGRSTF_Pos) /*!< Independent Watchdog reset flag */
#define RCC_FLAG_WWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_WWDGRSTF_Pos) /*!< Window watchdog reset flag */
#define RCC_FLAG_LPWRRST ((CSR_REG_INDEX << 5U) | RCC_CSR_LPWRRSTF_Pos) /*!< Low-Power reset flag */
#if defined(RCC_HSI48_SUPPORT)
/* Flags in the CRRCR register */
#define RCC_FLAG_HSI48RDY ((CRRCR_REG_INDEX << 5U) | RCC_CRRCR_RC48RDY_Pos) /*!< HSI48 Ready flag */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_LSEDrive_Config LSE Drive Configuration
* @{
*/
#define RCC_LSEDRIVE_LOW 0x00000000U /*!< LSE low drive capability */
#define RCC_LSEDRIVE_MEDIUMLOW RCC_BDCR_LSEDRV_0 /*!< LSE medium low drive capability */
#define RCC_LSEDRIVE_MEDIUMHIGH RCC_BDCR_LSEDRV_1 /*!< LSE medium high drive capability */
#define RCC_LSEDRIVE_HIGH RCC_BDCR_LSEDRV /*!< LSE high drive capability */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup RCC_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable AHB Peripheral Clock Enable Disable
* @brief Enable or disable the AHB peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(DMA2)
#define __HAL_RCC_DMA2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_DMA2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_CRC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(RNG)
#define __HAL_RCC_RNG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_RNGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_RNGEN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_AESEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_AESEN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* AES */
#define __HAL_RCC_DMA1_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN)
#if defined(DMA2)
#define __HAL_RCC_DMA2_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_DMA2EN)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN)
#define __HAL_RCC_CRC_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN)
#if defined(RNG)
#define __HAL_RCC_RNG_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_RNGEN)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_AESEN)
#endif /* AES */
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Enable_Disable IOPORT Clock Enable Disable
* @brief Enable or disable the IO Ports clock.
* @note After reset, the IO ports clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOD_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOEEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOEEN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOA_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN)
#define __HAL_RCC_GPIOB_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN)
#define __HAL_RCC_GPIOC_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN)
#define __HAL_RCC_GPIOD_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOEEN)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Peripheral Clock Enable Disable
* @brief Enable or disable the APB1 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM4EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM4EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* TIM4 */
#define __HAL_RCC_TIM6_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM6EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM6EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM7_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM7EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM7EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* CRS */
#define __HAL_RCC_RTCAPB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_WWDG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_SPI2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(SPI3)
#define __HAL_RCC_SPI3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_SPI3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI3EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* SPI3 */
#define __HAL_RCC_USART2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_USART3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_USART4_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(USART5)
#define __HAL_RCC_USART5_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART5EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART5EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART6EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART6EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_LPUART1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_LPUART1EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_LPUART2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_LPUART2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_I2C2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(I2C3)
#define __HAL_RCC_I2C3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_I2C3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C3EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_CECEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_CECEN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_UCPD1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_UCPD1EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_UCPD2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_UCPD2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USBEN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_FDCANEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_FDCANEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* FDCAN1 || FDCAN2 */
#define __HAL_RCC_DBGMCU_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_PWR_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(DAC1)
#define __HAL_RCC_DAC1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_DAC1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_DAC1EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM2EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM1EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* LPTIM1 */
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Peripheral Clock Enable Disable
* @brief Enable or disable the APB2 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_SPI1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_USART1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM14_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM17_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_ADC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN)
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM4EN)
#endif /* TIM4 */
#if defined(TIM6)
#define __HAL_RCC_TIM6_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM6EN)
#endif /* TIM6 */
#if defined(TIM7)
#define __HAL_RCC_TIM7_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM7EN)
#endif /* TIM7 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN);
#endif /* CRS */
#define __HAL_RCC_RTCAPB_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN)
#define __HAL_RCC_SPI2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN)
#if defined(SPI3)
#define __HAL_RCC_SPI3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_SPI3EN)
#endif /* SPI3 */
#define __HAL_RCC_USART2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN)
#endif /* USART4 */
#if defined(USART5)
#define __HAL_RCC_USART5_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART5EN)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART6EN)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_LPUART1EN)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_LPUART2EN)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN)
#define __HAL_RCC_I2C2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN)
#if defined(I2C3)
#define __HAL_RCC_I2C3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2C3EN)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_CECEN)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_UCPD1EN)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_UCPD2EN)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USBEN)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_FDCANEN)
#endif /* FDCAN1 || FDCAN2 */
#define __HAL_RCC_DBGMCU_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN)
#define __HAL_RCC_PWR_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_PWREN)
#if defined(DAC1)
#define __HAL_RCC_DAC1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_DAC1EN)
#endif /* DAC1 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM1EN)
#endif /* LPTIM1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM2EN)
#endif /* LPTIM2 */
#define __HAL_RCC_SYSCFG_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN)
#define __HAL_RCC_TIM1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN)
#define __HAL_RCC_SPI1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN)
#define __HAL_RCC_USART1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN)
#define __HAL_RCC_TIM14_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN)
#define __HAL_RCC_TIM17_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN)
#define __HAL_RCC_ADC_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN)
/**
* @}
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enabled_Disabled_Status AHB Peripheral Clock Enabled or Disabled Status
* @brief Check whether the AHB peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN) != RESET)
#if defined(DMA2)
#define __HAL_RCC_DMA2_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA2EN) != RESET)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) != RESET)
#define __HAL_RCC_CRC_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) != RESET)
#if defined(RNG)
#define __HAL_RCC_RNG_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_RNGEN) != RESET)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_AESEN) != RESET)
#endif /* AES */
#define __HAL_RCC_DMA1_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN) == RESET)
#if defined(DMA2)
#define __HAL_RCC_DMA2_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA2EN) == RESET)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) == RESET)
#define __HAL_RCC_CRC_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) == RESET)
#if defined(RNG)
#define __HAL_RCC_RNG_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_RNGEN) == RESET)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_AESEN) == RESET)
#endif /* AES */
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Enabled_Disabled_Status IOPORT Clock Enabled or Disabled Status
* @brief Check whether the IO Port clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) != RESET)
#define __HAL_RCC_GPIOB_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) != RESET)
#define __HAL_RCC_GPIOC_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) != RESET)
#define __HAL_RCC_GPIOD_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN) != RESET)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOEEN) != RESET)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) != RESET)
#define __HAL_RCC_GPIOA_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) == RESET)
#define __HAL_RCC_GPIOB_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) == RESET)
#define __HAL_RCC_GPIOC_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) == RESET)
#define __HAL_RCC_GPIOD_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN) == RESET)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOEEN) == RESET)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enabled_Disabled_Status APB1 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB1 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN) != 0U)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) != 0U)
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM4EN) != 0U)
#endif /* TIM4 */
#define __HAL_RCC_TIM6_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM6EN) != 0U)
#define __HAL_RCC_TIM7_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM7EN) != 0U)
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN) != 0U)
#endif /* CRS */
#define __HAL_RCC_RTCAPB_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) != 0U)
#define __HAL_RCC_WWDG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) != 0U)
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_FDCANEN) != 0U)
#endif /* FDCAN1 || FDCAN2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USBEN) != 0U)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#define __HAL_RCC_SPI2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) != 0U)
#if defined(SPI3)
#define __HAL_RCC_SPI3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI3EN) != 0U)
#endif /* SPI3 */
#define __HAL_RCC_USART2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) != 0U)
#define __HAL_RCC_USART3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN) != 0U)
#define __HAL_RCC_USART4_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN) != 0U)
#if defined(USART5)
#define __HAL_RCC_USART5_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART5EN) != 0U)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART6EN) != 0U)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPUART1EN)!= 0U)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPUART2EN)!= 0U)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN) != 0U)
#define __HAL_RCC_I2C2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN) != 0U)
#if defined(I2C3)
#define __HAL_RCC_I2C3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C3EN) != 0U)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_CECEN) != 0U)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_UCPD1EN) != 0U)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_UCPD2EN) != 0U)
#endif /* UCPD2 */
#define __HAL_RCC_DBGMCU_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) != 0U)
#define __HAL_RCC_PWR_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) != 0U)
#if defined(DAC1)
#define __HAL_RCC_DAC1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DAC1EN) != 0U)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM2EN) != 0U)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM1EN) != 0U)
#endif /* LPTIM1 */
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN) == 0U)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) == 0U)
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM4EN) == 0U)
#endif /* TIM4 */
#define __HAL_RCC_TIM6_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM6EN) == 0U)
#define __HAL_RCC_TIM7_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM7EN) == 0U)
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN) == 0U)
#endif /* CRS */
#define __HAL_RCC_RTCAPB_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) == 0U)
#define __HAL_RCC_WWDG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) == 0U)
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_FDCANEN) == 0U)
#endif /* FDCAN1 || FDCAN2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USBEN) == 0U)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#define __HAL_RCC_SPI2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) == 0U)
#if defined(SPI3)
#define __HAL_RCC_SPI3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI3EN) == 0U)
#endif /* SPI3 */
#define __HAL_RCC_USART2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) == 0U)
#define __HAL_RCC_USART3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN) == 0U)
#define __HAL_RCC_USART4_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN) == 0U)
#if defined(USART5)
#define __HAL_RCC_USART5_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART5EN) == 0U)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART6EN) == 0U)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPUART1EN)== 0U)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPUART2EN)== 0U)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN) == 0U)
#define __HAL_RCC_I2C2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN) == 0U)
#if defined(I2C3)
#define __HAL_RCC_I2C3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C3EN) == 0U)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_CECEN) == 0U)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_UCPD1EN) == 0U)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_UCPD2EN) == 0U)
#endif /* UCPD2 */
#define __HAL_RCC_DBGMCU_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) == 0U)
#define __HAL_RCC_PWR_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) == 0U)
#if defined(DAC1)
#define __HAL_RCC_DAC1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DAC1EN) == 0U)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM2EN) == 0U)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_LPTIM1EN) == 0U)
#endif /* LPTIM1 */
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enabled_Disabled_Status APB2 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB2 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) != 0U)
#define __HAL_RCC_TIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) != 0U)
#define __HAL_RCC_SPI1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) != 0U)
#define __HAL_RCC_USART1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) != 0U)
#define __HAL_RCC_TIM14_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) != 0U)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN) != 0U)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) != 0U)
#define __HAL_RCC_TIM17_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) != 0U)
#define __HAL_RCC_ADC_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) != 0U)
#define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) == 0U)
#define __HAL_RCC_TIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) == 0U)
#define __HAL_RCC_SPI1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) == 0U)
#define __HAL_RCC_USART1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) == 0U)
#define __HAL_RCC_TIM14_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) == 0U)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN) == 0U)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) == 0U)
#define __HAL_RCC_TIM17_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) == 0U)
#define __HAL_RCC_ADC_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) == 0U)
/**
* @}
*/
/** @defgroup RCC_AHB_Force_Release_Reset AHB Peripheral Force Release Reset
* @brief Force or release AHB1 peripheral reset.
* @{
*/
#define __HAL_RCC_AHB_FORCE_RESET() WRITE_REG(RCC->AHBRSTR, 0xFFFFFFFFU)
#define __HAL_RCC_DMA1_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMA1RST)
#if defined(DMA2)
#define __HAL_RCC_DMA2_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMA2RST)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST)
#define __HAL_RCC_CRC_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST)
#if defined(RNG)
#define __HAL_RCC_RNG_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_RNGRST)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_AESRST)
#endif /* AES */
#define __HAL_RCC_AHB_RELEASE_RESET() WRITE_REG(RCC->AHBRSTR, 0x00000000U)
#define __HAL_RCC_DMA1_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMA1RST)
#if defined(DMA2)
#define __HAL_RCC_DMA2_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMA2RST)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST)
#define __HAL_RCC_CRC_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST)
#if defined(RNG)
#define __HAL_RCC_RNG_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_RNGRST)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_AESRST)
#endif /* AES */
/**
* @}
*/
/** @defgroup RCC_IOPORT_Force_Release_Reset IOPORT Force Release Reset
* @brief Force or release IO Port reset.
* @{
*/
#define __HAL_RCC_IOP_FORCE_RESET() WRITE_REG(RCC->IOPRSTR, 0xFFFFFFFFU)
#define __HAL_RCC_GPIOA_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST)
#define __HAL_RCC_GPIOB_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST)
#define __HAL_RCC_GPIOC_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOCRST)
#define __HAL_RCC_GPIOD_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIODRST)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOERST)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST)
#define __HAL_RCC_IOP_RELEASE_RESET() WRITE_REG(RCC->IOPRSTR, 0x00000000U)
#define __HAL_RCC_GPIOA_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST)
#define __HAL_RCC_GPIOB_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST)
#define __HAL_RCC_GPIOC_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOCRST)
#define __HAL_RCC_GPIOD_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIODRST)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOERST)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST)
/**
* @}
*/
/** @defgroup RCC_APB1_Force_Release_Reset APB1 Peripheral Force Release Reset
* @brief Force or release APB1 peripheral reset.
* @{
*/
#define __HAL_RCC_APB1_FORCE_RESET() WRITE_REG(RCC->APBRSTR1, 0xFFFFFFFFU)
#if defined(TIM2)
#define __HAL_RCC_TIM2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM2RST)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST)
#if defined(TIM4)
#define __HAL_RCC_TIM4_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM4RST)
#endif /* TIM4 */
#define __HAL_RCC_TIM6_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM6RST)
#define __HAL_RCC_TIM7_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM7RST)
#if defined(CRS)
#define __HAL_RCC_CRS_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_CRSRST)
#endif /* CRS */
#define __HAL_RCC_SPI2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST)
#if defined(SPI3)
#define __HAL_RCC_SPI3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI3RST)
#endif /* SPI3 */
#define __HAL_RCC_USART2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST)
#define __HAL_RCC_USART3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART3RST)
#define __HAL_RCC_USART4_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART4RST)
#if defined(USART5)
#define __HAL_RCC_USART5_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART5RST)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART6RST)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPUART1RST)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPUART2RST)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C1RST)
#define __HAL_RCC_I2C2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C2RST)
#if defined(I2C3)
#define __HAL_RCC_I2C3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C3RST)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_CECRST)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_UCPD1RST)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_UCPD2RST)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USBRST)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_FDCANRST)
#endif /* FDCAN1 || FDCAN2 */
#define __HAL_RCC_DBGMCU_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST)
#define __HAL_RCC_PWR_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST)
#if defined(DAC1)
#define __HAL_RCC_DAC1_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DAC1RST)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIM2RST)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIM1RST)
#endif /* LPTIM1 */
#define __HAL_RCC_APB1_RELEASE_RESET() WRITE_REG(RCC->APBRSTR1, 0x00000000U)
#if defined(TIM2)
#define __HAL_RCC_TIM2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM2RST)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST)
#if defined(TIM4)
#define __HAL_RCC_TIM4_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM4RST)
#endif /* TIM4 */
#define __HAL_RCC_TIM6_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM6RST)
#define __HAL_RCC_TIM7_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM7RST)
#if defined(CRS)
#define __HAL_RCC_CRS_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_CRSRST)
#endif /* CRS */
#define __HAL_RCC_SPI2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST)
#if defined(SPI3)
#define __HAL_RCC_SPI3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI3RST)
#endif /* SPI3 */
#define __HAL_RCC_USART2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST)
#define __HAL_RCC_USART3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART3RST)
#define __HAL_RCC_USART4_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART4RST)
#if defined(USART5)
#define __HAL_RCC_USART5_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART5RST)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART6RST)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPUART1RST)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPUART2RST)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C1RST)
#define __HAL_RCC_I2C2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C2RST)
#if defined(I2C3)
#define __HAL_RCC_I2C3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C3RST)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_CECRST)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_UCPD1RST)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_UCPD2RST)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USBRST)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_FDCANRST)
#endif /* FDCAN1 || FDCAN2 */
#define __HAL_RCC_DBGMCU_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST)
#define __HAL_RCC_PWR_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST)
#if defined(DAC1)
#define __HAL_RCC_DAC1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DAC1RST)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIM2RST)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_LPTIM1RST)
#endif /* LPTIM1 */
/**
* @}
*/
/** @defgroup RCC_APB2_Force_Release_Reset APB2 Peripheral Force Release Reset
* @brief Force or release APB2 peripheral reset.
* @{
*/
#define __HAL_RCC_APB2_FORCE_RESET() WRITE_REG(RCC->APBRSTR2, 0xFFFFFFFFU)
#define __HAL_RCC_SYSCFG_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST)
#define __HAL_RCC_TIM1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST)
#define __HAL_RCC_SPI1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST)
#define __HAL_RCC_USART1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST)
#define __HAL_RCC_TIM14_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST)
#if defined(TIM15)
#define __HAL_RCC_TIM15_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM15RST)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST)
#define __HAL_RCC_TIM17_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST)
#define __HAL_RCC_ADC_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST)
#define __HAL_RCC_APB2_RELEASE_RESET() WRITE_REG(RCC->APBRSTR2, 0x00U)
#define __HAL_RCC_SYSCFG_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST)
#define __HAL_RCC_TIM1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST)
#define __HAL_RCC_SPI1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST)
#define __HAL_RCC_USART1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST)
#define __HAL_RCC_TIM14_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST)
#if defined(TIM15)
#define __HAL_RCC_TIM15_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM15RST)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST)
#define __HAL_RCC_TIM17_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST)
#define __HAL_RCC_ADC_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST)
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Sleep_Enable_Disable AHB Peripherals Clock Sleep Enable Disable
* @brief Enable or disable the AHB peripherals clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_DMA1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN)
#if defined(DMA2)
#define __HAL_RCC_DMA2_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA2SMEN)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN)
#define __HAL_RCC_SRAM_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN)
#define __HAL_RCC_CRC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN)
#if defined(RNG)
#define __HAL_RCC_RNG_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_RNGSMEN)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_AESSMEN)
#endif /* AES */
#define __HAL_RCC_DMA1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN)
#if defined(DMA2)
#define __HAL_RCC_DMA2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA2SMEN)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN)
#define __HAL_RCC_SRAM_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN)
#define __HAL_RCC_CRC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN)
#if defined(RNG)
#define __HAL_RCC_RNG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_RNGSMEN)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_AESSMEN)
#endif /* AES */
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Sleep_Enable_Disable IOPORT Clock Sleep Enable Disable
* @brief Enable or disable the IOPORT clock during Low Power (Sleep) mode.
* @note IOPORT clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN)
#define __HAL_RCC_GPIOB_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN)
#define __HAL_RCC_GPIOC_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN)
#define __HAL_RCC_GPIOD_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOESMEN)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN)
#define __HAL_RCC_GPIOA_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN)
#define __HAL_RCC_GPIOB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN)
#define __HAL_RCC_GPIOC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN)
#define __HAL_RCC_GPIOD_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOESMEN)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Sleep_Enable_Disable APB1 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB1 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN)
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM4SMEN)
#endif /* TIM4 */
#define __HAL_RCC_TIM6_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM6SMEN)
#define __HAL_RCC_TIM7_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM7SMEN)
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN)
#endif /* CRS */
#define __HAL_RCC_RTCAPB_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN)
#define __HAL_RCC_WWDG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN)
#define __HAL_RCC_SPI2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN)
#if defined(SPI3)
#define __HAL_RCC_SPI3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI3SMEN)
#endif /* SPI3 */
#define __HAL_RCC_USART2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN)
#define __HAL_RCC_USART3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN)
#define __HAL_RCC_USART4_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN)
#if defined(USART5)
#define __HAL_RCC_USART5_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART5SMEN)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART6SMEN)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART1SMEN)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART2SMEN)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN)
#define __HAL_RCC_I2C2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN)
#if defined(I2C3)
#define __HAL_RCC_I2C3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C3SMEN)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CECSMEN)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD1SMEN)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD2SMEN)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCANSMEN)
#endif /* FDCAN1 || FDCAN2 */
#define __HAL_RCC_DBGMCU_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN)
#define __HAL_RCC_PWR_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN)
#if defined(DAC1)
#define __HAL_RCC_DAC1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DAC1SMEN)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM2SMEN)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM1SMEN)
#endif /* LPTIM1 */
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN)
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM4SMEN)
#endif /* TIM4 */
#define __HAL_RCC_TIM6_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM6SMEN)
#define __HAL_RCC_TIM7_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM7SMEN)
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN)
#endif /* CRS */
#define __HAL_RCC_RTCAPB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN)
#define __HAL_RCC_WWDG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN)
#define __HAL_RCC_SPI2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN)
#if defined(SPI3)
#define __HAL_RCC_SPI3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI3SMEN)
#endif /* TIM2 */
#define __HAL_RCC_USART2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN)
#define __HAL_RCC_USART3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN)
#define __HAL_RCC_USART4_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN)
#if defined(USART5)
#define __HAL_RCC_USART5_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART5SMEN)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART6SMEN)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART1SMEN)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART2SMEN)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN)
#define __HAL_RCC_I2C2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN)
#if defined(I2C3)
#define __HAL_RCC_I2C3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C3SMEN)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CECSMEN)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD1SMEN)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD2SMEN)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCANSMEN)
#endif /* FDCAN1) || FDCAN2 */
#define __HAL_RCC_DBGMCU_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN)
#define __HAL_RCC_PWR_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN)
#if defined(DAC1)
#define __HAL_RCC_DAC1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DAC1SMEN)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM2SMEN)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM1SMEN)
#endif /* LPTIM1 */
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Sleep_Enable_Disable APB2 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB2 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN)
#define __HAL_RCC_TIM1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN)
#define __HAL_RCC_SPI1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN)
#define __HAL_RCC_USART1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN)
#define __HAL_RCC_TIM14_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN)
#define __HAL_RCC_TIM17_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN)
#define __HAL_RCC_ADC_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN)
#define __HAL_RCC_SYSCFG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN)
#define __HAL_RCC_TIM1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN)
#define __HAL_RCC_SPI1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN)
#define __HAL_RCC_USART1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN)
#define __HAL_RCC_TIM14_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN)
#define __HAL_RCC_TIM17_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN)
#define __HAL_RCC_ADC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN)
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Sleep_Enabled_Disabled_Status AHB Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the AHB peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_DMA1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN) != RESET)
#if defined(DMA2)
#define __HAL_RCC_DMA2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA2SMEN) != RESET)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN)!= RESET)
#define __HAL_RCC_SRAM_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN) != RESET)
#define __HAL_RCC_CRC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN) != RESET)
#if defined(RNG)
#define __HAL_RCC_RNG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_RNGSMEN) != RESET)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_AESSMEN) != RESET)
#endif /* AES */
#define __HAL_RCC_DMA1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN) == RESET)
#if defined(DMA2)
#define __HAL_RCC_DMA2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA2SMEN) == RESET)
#endif /* DMA2 */
#define __HAL_RCC_FLASH_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN) == RESET)
#define __HAL_RCC_SRAM_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN) == RESET)
#define __HAL_RCC_CRC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN) == RESET)
#if defined(RNG)
#define __HAL_RCC_RNG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_RNGSMEN) == RESET)
#endif /* RNG */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_AESSMEN) == RESET)
#endif /* AES */
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Sleep_Enabled_Disabled_Status IOPORT Clock Sleep Enabled or Disabled Status
* @brief Check whether the IOPORT clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN)!= RESET)
#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN)!= RESET)
#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN)!= RESET)
#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN)!= RESET)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOESMEN)!= RESET)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN)!= RESET)
#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN) == RESET)
#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN) == RESET)
#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN) == RESET)
#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN) == RESET)
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOESMEN) == RESET)
#endif /* GPIOE */
#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Sleep_Enabled_Disabled_Status APB1 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the APB1 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN) != RESET)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN) != RESET)
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM4SMEN) != RESET)
#endif /* TIM4 */
#if defined(TIM6)
#define __HAL_RCC_TIM6_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM6SMEN) != RESET)
#endif /* TIM6 */
#if defined(TIM7)
#define __HAL_RCC_TIM7_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM7SMEN) != RESET)
#endif /* TIM7 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN) != RESET)
#endif /* CRS */
#define __HAL_RCC_RTCAPB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN) != RESET)
#define __HAL_RCC_WWDG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN) != RESET)
#define __HAL_RCC_SPI2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN) != RESET)
#if defined(SPI3)
#define __HAL_RCC_SPI3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI3SMEN) != RESET)
#endif /* SPI3 */
#define __HAL_RCC_USART2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN) != RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN) != RESET)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN) != RESET)
#endif /* USART4 */
#if defined(USART5)
#define __HAL_RCC_USART5_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART5SMEN) != RESET)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART6SMEN) != RESET)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART1SMEN)!= RESET)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART2SMEN)!= RESET)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN) != RESET)
#define __HAL_RCC_I2C2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN) != RESET)
#if defined(I2C3)
#define __HAL_RCC_I2C3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C3SMEN) != RESET)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CECSMEN) != RESET)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD1SMEN) != RESET)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD2SMEN) != RESET)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN) != RESET)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCANSMEN) != RESET)
#endif /* FDCAN1 || FDCAN2 */
#define __HAL_RCC_DBGMCU_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN) != RESET)
#define __HAL_RCC_PWR_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN) != RESET)
#if defined(DAC1)
#define __HAL_RCC_DAC1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DAC1SMEN) != RESET)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM2SMEN) != RESET)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM1SMEN) != RESET)
#endif /* LPTIM1 */
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN) == RESET)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN) == RESET)
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM4SMEN) == RESET)
#endif /* TIM4 */
#if defined(TIM6)
#define __HAL_RCC_TIM6_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM6SMEN) == RESET)
#endif /* TIM6 */
#if defined(TIM7)
#define __HAL_RCC_TIM7_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM7SMEN) == RESET)
#endif /* TIM7 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN) == RESET)
#endif /* CRS */
#define __HAL_RCC_RTCAPB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN) == RESET)
#define __HAL_RCC_WWDG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN) == RESET)
#define __HAL_RCC_SPI2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN) == RESET)
#if defined(SPI3)
#define __HAL_RCC_SPI3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI3SMEN) == RESET)
#endif /* SPI3 */
#define __HAL_RCC_USART2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN) == RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN) == RESET)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN) == RESET)
#endif /* USART4 */
#if defined(USART5)
#define __HAL_RCC_USART5_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART5SMEN) == RESET)
#endif /* USART5 */
#if defined(USART6)
#define __HAL_RCC_USART6_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART6SMEN) == RESET)
#endif /* USART6 */
#if defined(LPUART1)
#define __HAL_RCC_LPUART1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART1SMEN)== RESET)
#endif /* LPUART1 */
#if defined(LPUART2)
#define __HAL_RCC_LPUART2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPUART2SMEN)== RESET)
#endif /* LPUART2 */
#define __HAL_RCC_I2C1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN) == RESET)
#define __HAL_RCC_I2C2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN) == RESET)
#if defined(I2C3)
#define __HAL_RCC_I2C3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C3SMEN) == RESET)
#endif /* I2C3 */
#if defined(CEC)
#define __HAL_RCC_CEC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CECSMEN) == RESET)
#endif /* CEC */
#if defined(UCPD1)
#define __HAL_RCC_UCPD1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD1SMEN) == RESET)
#endif /* UCPD1 */
#if defined(UCPD2)
#define __HAL_RCC_UCPD2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_UCPD2SMEN) == RESET)
#endif /* UCPD2 */
#if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined (STM32G0C1xx)
#define __HAL_RCC_USB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN) == RESET)
#endif /* STM32G0B0xx || STM32G0B1xx || STM32G0C1xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define __HAL_RCC_FDCAN_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCANSMEN) == RESET)
#endif /* FDCAN1 || FDCAN2 */
#define __HAL_RCC_DBGMCU_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN) == RESET)
#define __HAL_RCC_PWR_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN) == RESET)
#if defined(DAC1)
#define __HAL_RCC_DAC1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DAC1SMEN) == RESET)
#endif /* DAC1 */
#if defined(LPTIM2)
#define __HAL_RCC_LPTIM2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM2SMEN) == RESET)
#endif /* LPTIM2 */
#if defined(LPTIM1)
#define __HAL_RCC_LPTIM1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_LPTIM1SMEN) == RESET)
#endif /* LPTIM1 */
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Sleep_Enabled_Disabled_Status APB2 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the APB2 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN) != RESET)
#define __HAL_RCC_TIM1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN) != RESET)
#define __HAL_RCC_SPI1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN) != RESET)
#define __HAL_RCC_USART1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN) != RESET)
#define __HAL_RCC_TIM14_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN) != RESET)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN) != RESET)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN) != RESET)
#define __HAL_RCC_TIM17_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN) != RESET)
#define __HAL_RCC_ADC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN) != RESET)
#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN) == RESET)
#define __HAL_RCC_TIM1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN) == RESET)
#define __HAL_RCC_SPI1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN) == RESET)
#define __HAL_RCC_USART1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN) == RESET)
#define __HAL_RCC_TIM14_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN) == RESET)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN) == RESET)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN) == RESET)
#define __HAL_RCC_TIM17_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN) == RESET)
#define __HAL_RCC_ADC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_Backup_Domain_Reset RCC Backup Domain Reset
* @{
*/
/** @brief Macros to force or release the Backup domain reset.
* @note This function resets the RTC peripheral (including the backup registers)
* and the RTC clock source selection in RCC_CSR register.
* @note The BKPSRAM is not affected by this reset.
* @retval None
*/
#define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->BDCR, RCC_BDCR_BDRST)
#define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST)
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration
* @{
*/
/** @brief Macros to enable or disable the RTC clock.
* @note As the RTC is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the RTC
* (to be done once after reset).
* @note These macros must be used after the RTC clock source was selected.
* @retval None
*/
#define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
#define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
/**
* @}
*/
/** @defgroup RCC_Clock_Configuration RCC Clock Configuration
* @{
*/
/** @brief Macros to enable the Internal High Speed oscillator (HSI).
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after startup
* from Reset, wakeup from STOP and STANDBY mode, or in case of failure
* of the HSE used directly or indirectly as system clock (if the Clock
* Security System CSS is enabled).
* @note After enabling the HSI, the application software should wait on HSIRDY
* flag to be set indicating that HSI clock is stable and can be used as
* system clock source.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macros to disable the Internal High Speed oscillator (HSI).
* @note HSI can not be stopped if it is used as system clock source. In this case,
* you have to select another source of the system clock then stop the HSI.
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* @param __HSICALIBRATIONVALUE__ specifies the calibration trimming value
* (default is RCC_HSICALIBRATION_DEFAULT).
* This parameter must be a number between 0 and 127.
* @retval None
*/
#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICALIBRATIONVALUE__) \
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, (uint32_t)(__HSICALIBRATIONVALUE__) << RCC_ICSCR_HSITRIM_Pos)
/**
* @brief Macros to enable or disable the force of the Internal High Speed oscillator (HSI)
* in STOP mode to be quickly available as kernel clock for USARTs and I2Cs.
* @note Keeping the HSI ON in STOP mode allows to avoid slowing down the communication
* speed because of the HSI startup time.
* @note The enable of this function has not effect on the HSION bit.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSISTOP_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSIKERON)
#define __HAL_RCC_HSISTOP_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSIKERON)
/** @brief Macro to configure the HSISYS clock.
* @param __HSIDIV__ specifies the HSI16 division factor.
* This parameter can be one of the following values:
* @arg @ref RCC_HSI_DIV1 HSI clock source is divided by 1
* @arg @ref RCC_HSI_DIV2 HSI clock source is divided by 2
* @arg @ref RCC_HSI_DIV4 HSI clock source is divided by 4
* @arg @ref RCC_HSI_DIV8 HSI clock source is divided by 8
* @arg @ref RCC_HSI_DIV16 HSI clock source is divided by 16
* @arg @ref RCC_HSI_DIV32 HSI clock source is divided by 32
* @arg @ref RCC_HSI_DIV64 HSI clock source is divided by 64
* @arg @ref RCC_HSI_DIV128 HSI clock source is divided by 128
*/
#define __HAL_RCC_HSI_CONFIG(__HSIDIV__) \
MODIFY_REG(RCC->CR, RCC_CR_HSIDIV, (__HSIDIV__))
/** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI).
* @note After enabling the LSI, the application software should wait on
* LSIRDY flag to be set indicating that LSI clock is stable and can
* be used to clock the IWDG and/or the RTC.
* @note LSI can not be disabled if the IWDG is running.
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION)
#define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION)
/**
* @brief Macro to configure the External High Speed oscillator (HSE).
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
* supported by this macro. User should request a transition to HSE Off
* first and then HSE On or HSE Bypass.
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
* software should wait on HSERDY flag to be set indicating that HSE clock
* is stable and can be used to clock the PLL and/or system clock.
* @note HSE state can not be changed if it is used directly or through the
* PLL as system clock. In this case, you have to select another source
* of the system clock then change the HSE state (ex. disable it).
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @note This function reset the CSSON bit, so if the clock security system(CSS)
* was previously enabled you have to enable it again after calling this
* function.
* @param __STATE__ specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg @ref RCC_HSE_OFF Turn OFF the HSE oscillator, HSERDY flag goes low after
* 6 HSE oscillator clock cycles.
* @arg @ref RCC_HSE_ON Turn ON the HSE oscillator.
* @arg @ref RCC_HSE_BYPASS HSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_HSE_CONFIG(__STATE__) do { \
if((__STATE__) == RCC_HSE_ON) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else if((__STATE__) == RCC_HSE_BYPASS) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEBYP); \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \
} \
} while(0U)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE).
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
* supported by this macro. User should request a transition to LSE Off
* first and then LSE On or LSE Bypass.
* @note As the LSE is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the LSE
* (to be done once after reset).
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application
* software should wait on LSERDY flag to be set indicating that LSE clock
* is stable and can be used to clock the RTC.
* @param __STATE__ specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg @ref RCC_LSE_OFF Turn OFF the LSE oscillator, LSERDY flag goes low after
* 6 LSE oscillator clock cycles.
* @arg @ref RCC_LSE_ON Turn ON the LSE oscillator.
* @arg @ref RCC_LSE_BYPASS LSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_LSE_CONFIG(__STATE__) do { \
if((__STATE__) == RCC_LSE_ON) \
{ \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
} \
else if((__STATE__) == RCC_LSE_BYPASS) \
{ \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
} \
} while(0U)
#if defined(RCC_HSI48_SUPPORT)
/** @brief Macros to enable or disable the Internal High Speed 48MHz oscillator (HSI48).
* @note The HSI48 is stopped by hardware when entering STOP and STANDBY modes.
* @note After enabling the HSI48, the application software should wait on HSI48RDY
* flag to be set indicating that HSI48 clock is stable.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSI48_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSI48ON)
#define __HAL_RCC_HSI48_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSI48ON)
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @addtogroup RCC_RTC_Clock_Configuration
* @{
*/
/** @brief Macros to configure the RTC clock (RTCCLK).
* @note As the RTC clock configuration bits are in the Backup domain and write
* access is denied to this domain after reset, you have to enable write
* access using the Power Backup Access macro before to configure
* the RTC clock source (to be done once after reset).
* @note Once the RTC clock is configured it cannot be changed unless the
* Backup domain is reset using __HAL_RCC_BACKUPRESET_FORCE() macro, or by
* a Power On Reset (POR).
*
* @param __RTC_CLKSOURCE__ specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV32 HSE clock divided by 32 selected
*
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
* work in STOP and STANDBY modes, and can be used as wakeup source.
* However, when the HSE clock is used as RTC clock source, the RTC
* cannot be used in STOP and STANDBY modes.
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
* RTC clock source).
* @retval None
*/
#define __HAL_RCC_RTC_CONFIG(__RTC_CLKSOURCE__) \
MODIFY_REG( RCC->BDCR, RCC_BDCR_RTCSEL, (__RTC_CLKSOURCE__))
/** @brief Macro to get the RTC clock source.
* @retval The returned value can be one of the following:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV32 HSE clock divided by 32 selected
*/
#define __HAL_RCC_GET_RTC_SOURCE() ((uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL)))
/** @brief Macros to enable or disable the main PLL.
* @note After enabling the main PLL, the application software should wait on
* PLLRDY flag to be set indicating that PLL clock is stable and can
* be used as system clock source.
* @note The main PLL can not be disabled if it is used as system clock source
* @note The main PLL is disabled by hardware when entering STOP and STANDBY modes.
* @retval None
*/
/**
* @}
*/
/** @addtogroup RCC_Clock_Configuration
* @{
*/
#define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON)
#define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON)
/** @brief Macro to configure the PLL clock source.
* @note This function must be used only when the main PLL is disabled.
* @param __PLLSOURCE__ specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_PLLSOURCE_NONE No clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSI HSI oscillator clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL clock entry
* @retval None
*
*/
#define __HAL_RCC_PLL_PLLSOURCE_CONFIG(__PLLSOURCE__) \
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__PLLSOURCE__))
/** @brief Macro to configure the PLL multiplication factor.
* @note This function must be used only when the main PLL is disabled.
* @param __PLLM__ specifies the division factor for PLL VCO input clock
* This parameter must be a value of RCC_PLLM_Clock_Divider.
* @note You have to set the PLLM parameter correctly to ensure that the VCO input
* frequency ranges from 4 to 16 MHz. It is recommended to select a frequency
* of 16 MHz to limit PLL jitter.
* @retval None
*
*/
#define __HAL_RCC_PLL_PLLM_CONFIG(__PLLM__) \
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLM, (__PLLM__))
/**
* @brief Macro to configure the main PLL clock source, multiplication and division factors.
* @note This function must be used only when the main PLL is disabled.
*
* @param __PLLSOURCE__ specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_PLLSOURCE_NONE No clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSI HSI oscillator clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL clock entry
*
* @param __PLLM__ specifies the division factor for PLL VCO input clock.
* This parameter must be a value of RCC_PLLM_Clock_Divider.
* @note You have to set the PLLM parameter correctly to ensure that the VCO input
* frequency ranges from 4 to 16 MHz. It is recommended to select a frequency
* of 16 MHz to limit PLL jitter.
*
* @param __PLLN__ specifies the multiplication factor for PLL VCO output clock.
* This parameter must be a number between 8 and 86.
* @note You have to set the PLLN parameter correctly to ensure that the VCO
* output frequency is between 64 and 344 MHz.
*
* @param __PLLP__ specifies the division factor for ADC clock.
* This parameter must be a value of @ref RCC_PLLP_Clock_Divider.
*
* @param __PLLQ__ specifies the division factor for RBG & HS Timers clocks.(1)
* This parameter must be a value of @ref RCC_PLLQ_Clock_Divider
* @note (1)__PLLQ__ parameter availability depends on devices
* @note If the USB FS is used in your application, you have to set the
* PLLQ parameter correctly to have 48 MHz clock for the USB. However,
* the RNG needs a frequency lower than or equal to 48 MHz to work
* correctly.
*
* @param __PLLR__ specifies the division factor for the main system clock.
* This parameter must be a value of RCC_PLLR_Clock_Divider
* @note You have to set the PLL parameters correctly to not exceed 64MHZ.
* @retval None
*/
#if defined(RCC_PLLQ_SUPPORT)
#define __HAL_RCC_PLL_CONFIG(__PLLSOURCE__, __PLLM__, __PLLN__, __PLLP__, __PLLQ__,__PLLR__ ) \
MODIFY_REG(RCC->PLLCFGR, \
(RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM | RCC_PLLCFGR_PLLN | \
RCC_PLLCFGR_PLLP | RCC_PLLCFGR_PLLQ | RCC_PLLCFGR_PLLR), \
((uint32_t) (__PLLSOURCE__) | \
(uint32_t) (__PLLM__) | \
(uint32_t) ((__PLLN__) << RCC_PLLCFGR_PLLN_Pos) | \
(uint32_t) (__PLLP__) | \
(uint32_t) (__PLLQ__) | \
(uint32_t) (__PLLR__)))
#else
#define __HAL_RCC_PLL_CONFIG(__PLLSOURCE__, __PLLM__, __PLLN__, __PLLP__, __PLLR__ ) \
MODIFY_REG(RCC->PLLCFGR, \
(RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM | RCC_PLLCFGR_PLLN | \
RCC_PLLCFGR_PLLP | RCC_PLLCFGR_PLLR), \
((uint32_t) (__PLLSOURCE__) | \
(uint32_t) (__PLLM__) | \
(uint32_t) ((__PLLN__) << RCC_PLLCFGR_PLLN_Pos) | \
(uint32_t) (__PLLP__) | \
(uint32_t) (__PLLR__)))
#endif /* RCC_PLLQ_SUPPORT */
/** @brief Macro to get the oscillator used as PLL clock source.
* @retval The oscillator used as PLL clock source. The returned value can be one
* of the following:
* @arg @ref RCC_PLLSOURCE_NONE No oscillator is used as PLL clock source.
* @arg @ref RCC_PLLSOURCE_HSI HSI oscillator is used as PLL clock source.
* @arg @ref RCC_PLLSOURCE_HSE HSE oscillator is used as PLL clock source.
*/
#define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC))
/**
* @brief Enable each clock output (RCC_PLLRCLK, RCC_PLLQCLK(*), RCC_PLLPCLK)
* @note Enabling clock outputs RCC_PLLPCLK and RCC_PLLQCLK(*) can be done at anytime
* without the need to stop the PLL in order to save power. But RCC_PLLRCLK cannot
* be stopped if used as System Clock.
* @note (*) RCC_PLLQCLK availability depends on devices
* @param __PLLCLOCKOUT__ specifies the PLL clock to be output.
* This parameter can be one or a combination of the following values:
* @arg @ref RCC_PLLPCLK This clock is used to generate the clock for the ADC.
* @if defined(STM32G081xx)
* @arg @ref RCC_PLLQCLK This Clock is used to generate the clock for the High Speed Timers,
* and the random analog generator (<=48 MHz).
* @endif
* @arg @ref RCC_PLLRCLK This Clock is used to generate the high speed system clock (up to 64MHz)
* @retval None
*/
#define __HAL_RCC_PLLCLKOUT_ENABLE(__PLLCLOCKOUT__) SET_BIT(RCC->PLLCFGR, (__PLLCLOCKOUT__))
/**
* @brief Disable each clock output (RCC_PLLRCLK, RCC_PLLQCLK(*), RCC_PLLPCLK)
* @note Disabling clock outputs RCC_PLLPCLK and RCC_PLLQCLK(*) can be done at anytime
* without the need to stop the PLL in order to save power. But RCC_PLLRCLK cannot
* be stopped if used as System Clock.
* @note (*) RCC_PLLQCLK availability depends on devices
* @param __PLLCLOCKOUT__ specifies the PLL clock to be output.
* This parameter can be one or a combination of the following values:
* @arg @ref RCC_PLLPCLK This clock may be used to generate the clock for the ADC, I2S1.
* @if defined(STM32G081xx)
* @arg @ref RCC_PLLQCLK This Clock may be used to generate the clock for the High Speed Timers,
* and RNG (<=48 MHz).
* @endif
* @arg @ref RCC_PLLRCLK This Clock is used to generate the high speed system clock (up to 64MHz)
* @retval None
*/
#define __HAL_RCC_PLLCLKOUT_DISABLE(__PLLCLOCKOUT__) CLEAR_BIT(RCC->PLLCFGR, (__PLLCLOCKOUT__))
/**
* @brief Get clock output enable status (RCC_PLLRCLK, RCC_PLLQCLK(*), RCC_PLLPCLK)
* @param __PLLCLOCKOUT__ specifies the output PLL clock to be checked.
* This parameter can be one of the following values:
* @arg RCC_PLLPCLK This clock may be used to generate the clock for ADC, I2S1.
* @if defined(STM32G081xx)
* @arg RCC_PLLQCLK This Clock may be used to generate the clock for the HS Timers,
* the RNG (<=48 MHz).
* @endif
* @arg @ref RCC_PLLRCLK This Clock is used to generate the high speed system clock (up to 64MHz)
* @retval SET / RESET
* @note (*) RCC_PLLQCLK availability depends on devices
*/
#define __HAL_RCC_GET_PLLCLKOUT_CONFIG(__PLLCLOCKOUT__) READ_BIT(RCC->PLLCFGR, (__PLLCLOCKOUT__))
/**
* @brief Macro to configure the system clock source.
* @param __SYSCLKSOURCE__ specifies the system clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_SYSCLKSOURCE_HSI HSI oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_HSE HSE oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_PLLCLK PLL output is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_LSI LSI oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_LSE LSE oscillator is used as system clock source.
* @retval None
*/
#define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) \
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__))
/** @brief Macro to get the clock source used as system clock.
* @retval The clock source used as system clock. The returned value can be one
* of the following:
* @arg @ref RCC_SYSCLKSOURCE_STATUS_HSI HSI used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_HSE HSE used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_PLLCLK PLL used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_LSI LSI used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_LSE LSE used as system clock source.
*/
#define __HAL_RCC_GET_SYSCLK_SOURCE() (RCC->CFGR & RCC_CFGR_SWS)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE) drive capability.
* @note As the LSE is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the LSE
* (to be done once after reset).
* @param __LSEDRIVE__ specifies the new state of the LSE drive capability.
* This parameter can be one of the following values:
* @arg @ref RCC_LSEDRIVE_LOW LSE oscillator low drive capability.
* @arg @ref RCC_LSEDRIVE_MEDIUMLOW LSE oscillator medium low drive capability.
* @arg @ref RCC_LSEDRIVE_MEDIUMHIGH LSE oscillator medium high drive capability.
* @arg @ref RCC_LSEDRIVE_HIGH LSE oscillator high drive capability.
* @retval None
*/
#define __HAL_RCC_LSEDRIVE_CONFIG(__LSEDRIVE__) \
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSEDRV, (uint32_t)(__LSEDRIVE__))
/** @brief Macro to configure the Microcontroller output clock.
* @param __MCOCLKSOURCE__ specifies the MCO clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled
* @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
* @arg @ref RCC_MCO1SOURCE_PLLCLK Main PLL clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_PLLPCLK PLLP output clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_PLLQCLK PLLQ output clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_RTCCLK RTC clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_RTC_WKUP RTC_WKUP clock selected as MCO source
@if STM32G0C1xx
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
@endif
* @param __MCODIV__ specifies the MCO clock prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCODIV_1 MCO clock source is divided by 1
* @arg @ref RCC_MCODIV_2 MCO clock source is divided by 2
* @arg @ref RCC_MCODIV_4 MCO clock source is divided by 4
* @arg @ref RCC_MCODIV_8 MCO clock source is divided by 8
* @arg @ref RCC_MCODIV_16 MCO clock source is divided by 16
* @arg @ref RCC_MCODIV_32 MCO clock source is divided by 32
* @arg @ref RCC_MCODIV_64 MCO clock source is divided by 128
* @arg @ref RCC_MCODIV_128 MCO clock source is divided by 256
*/
#define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), ((__MCOCLKSOURCE__) | (__MCODIV__)))
#if defined(RCC_MCO2_SUPPORT)
/** @brief Macro to configure the Microcontroller output clock 2.
* @param __MCOCLKSOURCE__ specifies the MCO2 clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO2SOURCE_NOCLOCK MCO2 output disabled
* @arg @ref RCC_MCO2SOURCE_SYSCLK System clock selected as MCO source
* @arg @ref RCC_MCO2SOURCE_HSI HSI clock selected as MCO2 source
* @arg @ref RCC_MCO2SOURCE_HSE HSE clock selected as MCO2 sourcee
* @arg @ref RCC_MCO2SOURCE_PLLCLK Main PLL clock selected as MCO2 source
* @arg @ref RCC_MCO2SOURCE_LSI LSI clock selected as MCO2 source
* @arg @ref RCC_MCO2SOURCE_LSE LSE clock selected as MCO2 source
* @arg @ref RCC_MCO2SOURCE_PLLPCLK PLLP output clock selected as MCO2 source
* @arg @ref RCC_MCO2SOURCE_PLLQCLK PLLQ output clock selected as MCO2 source
* @arg @ref RCC_MCO2SOURCE_RTCCLK RTC clock selected as MCO2 source
* @arg @ref RCC_MCO2SOURCE_RTC_WKUP RTC_WKUP clock selected as MCO2 source
@if STM32G0C1xx
* @arg @ref RCC_MCO2SOURCE_HSI48 HSI48 clock selected as MCO2 source for devices with HSI48
@endif
* @param __MCODIV__ specifies the MCO clock prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO2DIV_1 MCO2 clock source is divided by 1
* @arg @ref RCC_MCO2DIV_2 MCO2 clock source is divided by 2
* @arg @ref RCC_MCO2DIV_4 MCO2 clock source is divided by 4
* @arg @ref RCC_MCO2DIV_8 MCO2 clock source is divided by 8
* @arg @ref RCC_MCO2DIV_16 MCO2 clock source is divided by 16
* @arg @ref RCC_MCO2DIV_32 MCO2 clock source is divided by 32
* @arg @ref RCC_MCO2DIV_64 MCO2 clock source is divided by 64
* @arg @ref RCC_MCO2DIV_128 MCO2 clock source is divided by 128
* @arg @ref RCC_MCO2DIV_256 MCO2 clock source is divided by 256
* @arg @ref RCC_MCO2DIV_512 MCO2 clock source is divided by 512
* @arg @ref RCC_MCO2DIV_1024 MCO2 clock source is divided by 1024
*/
#define __HAL_RCC_MCO2_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2SEL | RCC_CFGR_MCO2PRE), ((__MCOCLKSOURCE__) | (__MCODIV__)))
#endif /* RCC_MCO2_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management
* @brief macros to manage the specified RCC Flags and interrupts.
* @{
*/
/** @brief Enable RCC interrupt.
* @param __INTERRUPT__ specifies the RCC interrupt sources to be enabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
@if STM32G0C1xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval None
*/
#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) SET_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Disable RCC interrupt.
* @param __INTERRUPT__ specifies the RCC interrupt sources to be disabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
@if STM32G0C1xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval None
*/
#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) CLEAR_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Clear RCC interrupt pending bits.
* @param __INTERRUPT__ specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
@if STM32G0C1xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval None
*/
#define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (RCC->CICR = (__INTERRUPT__))
/** @brief Check whether the RCC interrupt has occurred or not.
* @param __INTERRUPT__ specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
@if STM32G0C1xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval The new state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIFR & (__INTERRUPT__)) == (__INTERRUPT__))
/** @brief Set RMVF bit to clear the reset flags.
* The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PWRRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST and RCC_FLAG_LPWRRST.
* @retval None
*/
#define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF)
/** @brief Check whether the selected RCC flag is set or not.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg @ref RCC_FLAG_HSIRDY HSI oscillator clock ready
* @arg @ref RCC_FLAG_HSERDY HSE oscillator clock ready
* @arg @ref RCC_FLAG_PLLRDY Main PLL clock ready
* @arg @ref RCC_FLAG_LSERDY LSE oscillator clock ready
* @arg @ref RCC_FLAG_LSECSSD Clock security system failure on LSE oscillator detection
* @arg @ref RCC_FLAG_LSIRDY LSI oscillator clock ready
@if STM32G0C1xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @arg @ref RCC_FLAG_PWRRST BOR or POR/PDR reset
* @arg @ref RCC_FLAG_OBLRST OBLRST reset
* @arg @ref RCC_FLAG_PINRST Pin reset
* @arg @ref RCC_FLAG_SFTRST Software reset
* @arg @ref RCC_FLAG_IWDGRST Independent Watchdog reset
* @arg @ref RCC_FLAG_WWDGRST Window Watchdog reset
* @arg @ref RCC_FLAG_LPWRRST Low Power reset
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#if defined(RCC_HSI48_SUPPORT)
#define __HAL_RCC_GET_FLAG(__FLAG__) \
(((((((__FLAG__) >> 5U) == CR_REG_INDEX) ? RCC->CR : \
((((__FLAG__) >> 5U) == CRRCR_REG_INDEX) ? RCC->CRRCR : \
((((__FLAG__) >> 5U) == BDCR_REG_INDEX) ? RCC->BDCR : \
((((__FLAG__) >> 5U) == CSR_REG_INDEX) ? RCC->CSR : RCC->CIFR)))) & \
(1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) ? 1U : 0U)
#else
#define __HAL_RCC_GET_FLAG(__FLAG__) \
(((((((__FLAG__) >> 5U) == CR_REG_INDEX) ? RCC->CR : \
((((__FLAG__) >> 5U) == BDCR_REG_INDEX) ? RCC->BDCR : \
((((__FLAG__) >> 5U) == CSR_REG_INDEX) ? RCC->CSR : RCC->CIFR))) & \
(1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) ? 1U : 0U)
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/**
* @}
*/
/* Include RCC HAL Extended module */
#include "stm32g0xx_hal_rcc_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_Exported_Functions
* @{
*/
/** @addtogroup RCC_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions ******************************/
HAL_StatusTypeDef HAL_RCC_DeInit(void);
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency);
/**
* @}
*/
/** @addtogroup RCC_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ************************************************/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv);
void HAL_RCC_EnableCSS(void);
void HAL_RCC_EnableLSECSS(void);
void HAL_RCC_DisableLSECSS(void);
uint32_t HAL_RCC_GetSysClockFreq(void);
uint32_t HAL_RCC_GetHCLKFreq(void);
uint32_t HAL_RCC_GetPCLK1Freq(void);
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency);
/* LSE & HSE CSS NMI IRQ handler */
void HAL_RCC_NMI_IRQHandler(void);
/* User Callbacks in non blocking mode (IT mode) */
void HAL_RCC_CSSCallback(void);
void HAL_RCC_LSECSSCallback(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32G0xx_HAL_RCC_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/