d38bd4ae27
Signed-off-by: Thomas Klaehn <thomas.klaehn@perinet.io>
1438 lines
53 KiB
C
1438 lines
53 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32g0xx_hal_rcc.c
|
|
* @author MCD Application Team
|
|
* @brief RCC HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Reset and Clock Control (RCC) peripheral:
|
|
* + Initialization and de-initialization functions
|
|
* + Peripheral Control functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### RCC specific features #####
|
|
==============================================================================
|
|
[..]
|
|
After reset the device is running from High Speed Internal oscillator
|
|
(from 8 MHz to reach 16MHz) with Flash 0 wait state. Flash prefetch buffer,
|
|
D-Cache and I-Cache are disabled, and all peripherals are off except internal
|
|
SRAM, Flash and JTAG.
|
|
|
|
(+) There is no prescaler on High speed (AHB) and Low speed (APB) buses:
|
|
all peripherals mapped on these buses are running at HSI speed.
|
|
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
|
|
(+) All GPIOs are in analog mode, except the JTAG pins which
|
|
are assigned to be used for debug purpose.
|
|
|
|
[..]
|
|
Once the device started from reset, the user application has to:
|
|
(+) Configure the clock source to be used to drive the System clock
|
|
(if the application needs higher frequency/performance)
|
|
(+) Configure the System clock frequency and Flash settings
|
|
(+) Configure the AHB and APB buses prescalers
|
|
(+) Enable the clock for the peripheral(s) to be used
|
|
(+) Configure the clock source(s) for peripherals which clocks are not
|
|
derived from the System clock (RTC, ADC, RNG, HSTIM)
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© Copyright (c) 2018 STMicroelectronics.
|
|
* All rights reserved.</center></h2>
|
|
*
|
|
* This software component is licensed by ST under BSD 3-Clause license,
|
|
* the "License"; You may not use this file except in compliance with the
|
|
* License. You may obtain a copy of the License at:
|
|
* opensource.org/licenses/BSD-3-Clause
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32g0xx_hal.h"
|
|
|
|
/** @addtogroup STM32G0xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC RCC
|
|
* @brief RCC HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_RCC_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Constants RCC Private Constants
|
|
* @{
|
|
*/
|
|
#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
|
|
#define HSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define LSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
|
|
#if defined(RCC_HSI48_SUPPORT)
|
|
#define HSI48_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
|
|
#endif /* RCC_HSI48_SUPPORT */
|
|
#define CLOCKSWITCH_TIMEOUT_VALUE (5000U) /* 5 s */
|
|
|
|
#define PLLSOURCE_NONE (0U)
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Macros RCC Private Macros
|
|
* @{
|
|
*/
|
|
#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
#define MCO1_GPIO_PORT GPIOA
|
|
#define MCO1_PIN GPIO_PIN_8
|
|
|
|
#if defined(RCC_MCO2_SUPPORT)
|
|
#define MCO2_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
#define MCO2_GPIO_PORT GPIOA
|
|
#define MCO2_PIN GPIO_PIN_10
|
|
#endif /* RCC_MCO2_SUPPORT */
|
|
|
|
#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
|
|
(MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__)))
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Variables RCC Private Variables
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/* Exported functions --------------------------------------------------------*/
|
|
|
|
/** @defgroup RCC_Exported_Functions RCC Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..]
|
|
This section provides functions allowing to configure the internal and external oscillators
|
|
(HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB)
|
|
|
|
[..] Internal/external clock and PLL configuration
|
|
(+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
|
|
the PLL as System clock source.
|
|
|
|
(+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
|
|
clock source.
|
|
|
|
(+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or
|
|
through the PLL as System clock source. Can be used also optionally as RTC clock source.
|
|
|
|
(+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source.
|
|
|
|
(+) PLL (clocked by HSI, HSE) providing up to three independent output clocks:
|
|
(++) The first output (R) is used to generate the high speed system clock (up to 64MHz).
|
|
(++) The second output(Q) is used to generate the clock for the random analog generator and HStim.
|
|
(++) The Third output (P) is used to generate the clock for the Analog to Digital Converter and I2S.
|
|
|
|
(+) CSS (Clock security system): once enabled, if a HSE or LSE clock failure occurs
|
|
(HSE used directly or through PLL as System clock source), the System clock
|
|
is automatically switched respectively to HSI or LSI and an interrupt is generated
|
|
if enabled. The interrupt is linked to the Cortex-M0+ NMI (Non-Maskable Interrupt)
|
|
exception vector.
|
|
|
|
(+) MCOx (microcontroller clock output):
|
|
(++) MCO1 used to output LSI, HSI48(*), HSI, LSE, HSE or main PLL clock (through a configurable prescaler) on PA8 pin.
|
|
(++) MCO2(*) used to output LSI, HSI48(*), HSI, LSE, HSE, main PLLR clock, PLLQ clock, PLLP clock, RTC clock or RTC_Wakeup (through a configurable prescaler) on PA10 pin.
|
|
(*) available on certain devices only
|
|
|
|
[..] System, AHB and APB buses clocks configuration
|
|
(+) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
|
|
HSE, LSI, LSE and main PLL.
|
|
The AHB clock (HCLK) is derived from System clock through configurable
|
|
prescaler and used to clock the CPU, memory and peripherals mapped
|
|
on AHB bus (DMA, GPIO...).and APB (PCLK1) clock is derived
|
|
from AHB clock through configurable prescalers and used to clock
|
|
the peripherals mapped on these buses. You can use
|
|
"@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
|
|
|
|
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
|
|
|
|
(+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
|
|
divided by 2 to 31.
|
|
You have to use @ref __HAL_RCC_RTC_ENABLE() and @ref HAL_RCCEx_PeriphCLKConfig() function
|
|
to configure this clock.
|
|
|
|
(+@) RNG(*) requires a frequency equal or lower than 48 MHz.
|
|
This clock is derived from the main PLL or HSI or System clock.
|
|
(*) available on certain devices only
|
|
|
|
(+@) IWDG clock which is always the LSI clock.
|
|
|
|
|
|
(+) The maximum frequency of the SYSCLK, HCLK, PCLK is 64 MHz.
|
|
Depending on the device voltage range, the maximum frequency should be
|
|
adapted accordingly.
|
|
|
|
@endverbatim
|
|
|
|
(++) Table 1. HCLK clock frequency.
|
|
(++) +-------------------------------------------------------+
|
|
(++) | Latency | HCLK clock frequency (MHz) |
|
|
(++) | |-------------------------------------|
|
|
(++) | | voltage range 1 | voltage range 2 |
|
|
(++) | | 1.2 V | 1.0 V |
|
|
(++) |-----------------|------------------|------------------|
|
|
(++) |0WS(1 CPU cycles)| HCLK <= 24 | HCLK <= 8 |
|
|
(++) |-----------------|------------------|------------------|
|
|
(++) |1WS(2 CPU cycles)| HCLK <= 48 | HCLK <= 16 |
|
|
(++) |-----------------|------------------|------------------|
|
|
(++) |2WS(3 CPU cycles)| HCLK <= 64 | - |
|
|
(++) |-----------------|------------------|------------------|
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Reset the RCC clock configuration to the default reset state.
|
|
* @note The default reset state of the clock configuration is given below:
|
|
* - HSI ON and used as system clock source
|
|
* - HSE, PLL OFF
|
|
* - AHB and APB prescaler set to 1.
|
|
* - CSS, MCO1 OFF
|
|
* - All interrupts disabled
|
|
* @note This function does not modify the configuration of the
|
|
* - Peripheral clocks
|
|
* - LSI, LSE and RTC clocks
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_DeInit(void)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Set HSION bit to the reset value */
|
|
SET_BIT(RCC->CR, RCC_CR_HSION);
|
|
|
|
/* Wait till HSI is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set HSITRIM[6:0] bits to the reset value */
|
|
RCC->ICSCR = RCC_ICSCR_HSITRIM_6;
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Reset CFGR register (HSI is selected as system clock source) */
|
|
RCC->CFGR = 0x00000000u;
|
|
|
|
/* Wait till HSI is ready */
|
|
while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Clear CR register in 2 steps: first to clear HSEON in case bypass was enabled */
|
|
RCC->CR = RCC_CR_HSION;
|
|
|
|
/* Then again to HSEBYP in case bypass was enabled */
|
|
RCC->CR = RCC_CR_HSION;
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* once PLL is OFF, reset PLLCFGR register to default value */
|
|
RCC->PLLCFGR = RCC_PLLCFGR_PLLN_4;
|
|
|
|
/* Disable all interrupts */
|
|
RCC->CIER = 0x00000000u;
|
|
|
|
/* Clear all flags */
|
|
RCC->CICR = 0xFFFFFFFFu;
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
SystemCoreClock = HSI_VALUE;
|
|
|
|
/* Adapt Systick interrupt period */
|
|
if (HAL_InitTick(uwTickPrio) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the RCC Oscillators according to the specified parameters in the
|
|
* @ref RCC_OscInitTypeDef.
|
|
* @param RCC_OscInitStruct pointer to a @ref RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC Oscillators.
|
|
* @note The PLL is not disabled when used as system clock.
|
|
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
|
|
* supported by this function. User should request a transition to HSE Off
|
|
* first and then to HSE On or HSE Bypass.
|
|
* @note Transition LSE Bypass to LSE On and LSE On to LSE Bypass are not
|
|
* supported by this function. User should request a transition to LSE Off
|
|
* first and then to LSE On or LSE Bypass.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t temp_sysclksrc;
|
|
uint32_t temp_pllckcfg;
|
|
|
|
/* Check Null pointer */
|
|
if (RCC_OscInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
|
|
|
|
/*------------------------------- HSE Configuration ------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
|
|
|
|
temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
temp_pllckcfg = __HAL_RCC_GET_PLL_OSCSOURCE();
|
|
|
|
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
|
|
if (((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_pllckcfg == RCC_PLLSOURCE_HSE)) || (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE))
|
|
{
|
|
if ((READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set the new HSE configuration ---------------------------------------*/
|
|
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
|
|
|
|
/* Check the HSE State */
|
|
if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*----------------------------- HSI Configuration --------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
|
|
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
|
|
assert_param(IS_RCC_HSIDIV(RCC_OscInitStruct->HSIDiv));
|
|
|
|
/* Check if HSI16 is used as system clock or as PLL source when PLL is selected as system clock */
|
|
temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
temp_pllckcfg = __HAL_RCC_GET_PLL_OSCSOURCE();
|
|
if (((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_pllckcfg == RCC_PLLSOURCE_HSI)) || (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI))
|
|
{
|
|
/* When HSI is used as system clock or as PLL input clock it can not be disabled */
|
|
if ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
/* Otherwise, just the calibration is allowed */
|
|
else
|
|
{
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
|
|
if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI)
|
|
{
|
|
/* Adjust the HSI16 division factor */
|
|
__HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIDiv);
|
|
|
|
/* Update the SystemCoreClock global variable with HSISYS value */
|
|
SystemCoreClock = (HSI_VALUE / (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV)) >> RCC_CR_HSIDIV_Pos)));
|
|
}
|
|
|
|
/* Adapt Systick interrupt period */
|
|
if (HAL_InitTick(uwTickPrio) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the HSI State */
|
|
if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
|
|
{
|
|
/* Configure the HSI16 division factor */
|
|
__HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIDiv);
|
|
|
|
/* Enable the Internal High Speed oscillator (HSI16). */
|
|
__HAL_RCC_HSI_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (HSI16). */
|
|
__HAL_RCC_HSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSI Configuration -------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
|
|
|
|
/* Check if LSI is used as system clock */
|
|
if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSI)
|
|
{
|
|
/* When LSI is used as system clock it will not be disabled */
|
|
if ((((RCC->CSR) & RCC_CSR_LSIRDY) != 0U) && (RCC_OscInitStruct->LSIState == RCC_LSI_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the LSI State */
|
|
if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
|
|
{
|
|
/* Enable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI is ready */
|
|
while (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI is disabled */
|
|
while (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSE Configuration -------------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
|
|
{
|
|
FlagStatus pwrclkchanged = RESET;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
|
|
|
|
/* When the LSE is used as system clock, it is not allowed disable it */
|
|
if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSE)
|
|
{
|
|
if ((((RCC->BDCR) & RCC_BDCR_LSERDY) != 0U) && (RCC_OscInitStruct->LSEState == RCC_LSE_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update LSE configuration in Backup Domain control register */
|
|
/* Requires to enable write access to Backup Domain of necessary */
|
|
if (__HAL_RCC_PWR_IS_CLK_DISABLED() != 0U)
|
|
{
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
pwrclkchanged = SET;
|
|
}
|
|
|
|
if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
{
|
|
/* Enable write access to Backup domain */
|
|
SET_BIT(PWR->CR1, PWR_CR1_DBP);
|
|
|
|
/* Wait for Backup domain Write protection disable */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the new LSE configuration -----------------------------------------*/
|
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
|
|
/* Check the LSE State */
|
|
if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is ready */
|
|
while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is disabled */
|
|
while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Restore clock configuration if changed */
|
|
if (pwrclkchanged == SET)
|
|
{
|
|
__HAL_RCC_PWR_CLK_DISABLE();
|
|
}
|
|
}
|
|
}
|
|
#if defined(RCC_HSI48_SUPPORT)
|
|
/*------------------------------ HSI48 Configuration -----------------------*/
|
|
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
|
|
|
|
/* Check the LSI State */
|
|
if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
|
|
{
|
|
/* Enable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSI48RDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_HSI48RDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* RCC_HSI48_SUPPORT */
|
|
/*-------------------------------- PLL Configuration -----------------------*/
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
|
|
|
|
if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
|
|
{
|
|
/* Check if the PLL is used as system clock or not */
|
|
if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
|
|
{
|
|
if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
|
|
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
|
|
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
|
|
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
|
|
#if defined(RCC_PLLQ_SUPPORT)
|
|
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
|
|
#endif /* RCC_PLLQ_SUPPORT */
|
|
assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
|
|
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Configure the main PLL clock source, multiplication and division factors. */
|
|
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
RCC_OscInitStruct->PLL.PLLM,
|
|
RCC_OscInitStruct->PLL.PLLN,
|
|
RCC_OscInitStruct->PLL.PLLP,
|
|
#if defined(RCC_PLLQ_SUPPORT)
|
|
RCC_OscInitStruct->PLL.PLLQ,
|
|
#endif /* RCC_PLLQ_SUPPORT */
|
|
RCC_OscInitStruct->PLL.PLLR);
|
|
|
|
/* Enable the main PLL. */
|
|
__HAL_RCC_PLL_ENABLE();
|
|
|
|
/* Enable PLLR Clock output. */
|
|
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLLRCLK);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Disable all PLL outputs to save power */
|
|
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PLLSOURCE_NONE);
|
|
|
|
#if defined(RCC_PLLQ_SUPPORT)
|
|
__HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLQEN | RCC_PLLCFGR_PLLREN);
|
|
#else
|
|
__HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLREN);
|
|
#endif /* RCC_PLLQ_SUPPORT */
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is disabled */
|
|
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check if there is a request to disable the PLL used as System clock source */
|
|
if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Do not return HAL_ERROR if request repeats the current configuration */
|
|
temp_pllckcfg = RCC->PLLCFGR;
|
|
if ((READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
|
|
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) ||
|
|
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos)) ||
|
|
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) ||
|
|
#if defined (RCC_PLLQ_SUPPORT)
|
|
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ) ||
|
|
#endif /* RCC_PLLQ_SUPPORT */
|
|
(READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLR) != RCC_OscInitStruct->PLL.PLLR))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the CPU, AHB and APB buses clocks according to the specified
|
|
* parameters in the RCC_ClkInitStruct.
|
|
* @param RCC_ClkInitStruct pointer to a @ref RCC_ClkInitTypeDef structure that
|
|
* contains the configuration information for the RCC peripheral.
|
|
* @param FLatency FLASH Latency
|
|
* This parameter can be one of the following values:
|
|
* @arg FLASH_LATENCY_0 FLASH 0 Latency cycle
|
|
* @arg FLASH_LATENCY_1 FLASH 1 Latency cycle
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
* and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
|
|
*
|
|
* @note The HSI is used by default as system clock source after
|
|
* startup from Reset, wake-up from STANDBY mode. After restart from Reset,
|
|
* the HSI frequency is set to 8 Mhz, then it reaches its default value 16 MHz.
|
|
*
|
|
* @note The HSI can be selected as system clock source after
|
|
* from STOP modes or in case of failure of the HSE used directly or indirectly
|
|
* as system clock (if the Clock Security System CSS is enabled).
|
|
*
|
|
* @note The LSI can be selected as system clock source after
|
|
* in case of failure of the LSE used directly or indirectly
|
|
* as system clock (if the Clock Security System LSECSS is enabled).
|
|
*
|
|
* @note A switch from one clock source to another occurs only if the target
|
|
* clock source is ready (clock stable after startup delay or PLL locked).
|
|
* If a clock source which is not yet ready is selected, the switch will
|
|
* occur when the clock source is ready.
|
|
*
|
|
* @note You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
|
|
* currently used as system clock source.
|
|
*
|
|
* @note Depending on the device voltage range, the software has to set correctly
|
|
* HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
|
|
* (for more details refer to section above "Initialization/de-initialization functions")
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Check Null pointer */
|
|
if (RCC_ClkInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
|
|
assert_param(IS_FLASH_LATENCY(FLatency));
|
|
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
must be correctly programmed according to the frequency of the FLASH clock
|
|
(HCLK) and the supply voltage of the device. */
|
|
|
|
/* Increasing the number of wait states because of higher CPU frequency */
|
|
if (FLatency > __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by polling the FLASH_ACR register */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while ((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-------------------------- HCLK Configuration --------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
{
|
|
/* Set the highest APB divider in order to ensure that we do not go through
|
|
a non-spec phase whatever we decrease or increase HCLK. */
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
{
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_HCLK_DIV16);
|
|
}
|
|
|
|
/* Set the new HCLK clock divider */
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
|
|
/*------------------------- SYSCLK Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
{
|
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
|
|
/* HSE is selected as System Clock Source */
|
|
if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
/* Check the HSE ready flag */
|
|
if (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* PLL is selected as System Clock Source */
|
|
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
/* Check the PLL ready flag */
|
|
if (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* HSI is selected as System Clock Source */
|
|
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI)
|
|
{
|
|
/* Check the HSI ready flag */
|
|
if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* LSI is selected as System Clock Source */
|
|
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_LSI)
|
|
{
|
|
/* Check the LSI ready flag */
|
|
if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* LSE is selected as System Clock Source */
|
|
else
|
|
{
|
|
/* Check the LSE ready flag */
|
|
if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Decreasing the number of wait states because of lower CPU frequency */
|
|
if (FLatency < __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by polling the FLASH_ACR register */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while ((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
{
|
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
{
|
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider);
|
|
}
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
SystemCoreClock = (HAL_RCC_GetSysClockFreq() >> ((AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos]) & 0x1FU));
|
|
|
|
/* Configure the source of time base considering new system clocks settings*/
|
|
return HAL_InitTick(uwTickPrio);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
|
|
* @brief RCC clocks control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to:
|
|
|
|
(+) Output clock to MCO pin.
|
|
(+) Retrieve current clock frequencies.
|
|
(+) Enable the Clock Security System.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Select the clock source to output on MCO1 pin(PA8) or MC02 pin (PA10)(*).
|
|
* @note PA8, PA10(*) should be configured in alternate function mode.
|
|
* @param RCC_MCOx specifies the output direction for the clock source.
|
|
* For STM32G0xx family this parameter can have only one value:
|
|
* @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
|
|
* @arg @ref RCC_MCO2 Clock source to output on MCO2 pin(PA10)(*).
|
|
* @param RCC_MCOSource specifies the clock source to output.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO
|
|
* @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48(*)
|
|
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
|
|
* @arg @ref RCC_MCO1SOURCE_PLLCLK main PLLR clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_PLLPCLK PLLP clock selected as MCO1 source(*)
|
|
* @arg @ref RCC_MCO1SOURCE_PLLQCLK PLLQ clock selected as MCO1 source(*)
|
|
* @arg @ref RCC_MCO1SOURCE_RTCCLK RTC clock selected as MCO1 source(*)
|
|
* @arg @ref RCC_MCO1SOURCE_RTC_WKUP RTC_Wakeup selected as MCO1 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_NOCLOCK MCO2 output disabled, no clock on MCO2(*)
|
|
* @arg @ref RCC_MCO2SOURCE_SYSCLK system clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_HSI48 HSI48 clock selected as MCO2 source for devices with HSI48(*)
|
|
* @arg @ref RCC_MCO2SOURCE_HSI HSI clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_HSE HSE clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_PLLCLK main PLLR clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_LSI LSI clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_LSE LSE clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_PLLPCLK PLLP clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_PLLQCLK PLLQ clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_RTCCLK RTC clock selected as MCO2 source(*)
|
|
* @arg @ref RCC_MCO2SOURCE_RTC_WKUP RTC_Wakeup selected as MCO2 source(*)
|
|
* @param RCC_MCODiv specifies the MCO prescaler.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_32 division by 32 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_64 division by 64 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock
|
|
* @arg @ref RCC_MCO2DIV_1 no division applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_2 division by 2 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_4 division by 4 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_8 division by 8 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_16 division by 16 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_32 division by 32 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_64 division by 64 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_128 division by 128 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_256 division by 256 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_512 division by 512 applied to MCO2 clock(*)
|
|
* @arg @ref RCC_MCO2DIV_1024 division by 1024 applied to MCO2 clock(*)
|
|
*
|
|
* (*) Feature not available on all devices of the family
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MCO(RCC_MCOx));
|
|
|
|
/* Common GPIO init parameters */
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
|
|
if (RCC_MCOx == RCC_MCO1)
|
|
{
|
|
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
|
|
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
|
|
/* MCO1 Clock Enable */
|
|
MCO1_CLK_ENABLE();
|
|
/* Configure the MCO1 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO1_PIN;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
|
|
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
|
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv));
|
|
}
|
|
#if defined(RCC_MCO2_SUPPORT)
|
|
else if (RCC_MCOx == RCC_MCO2)
|
|
{
|
|
assert_param(IS_RCC_MCO2DIV(RCC_MCODiv));
|
|
assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
|
|
/* MCO2 Clock Enable */
|
|
MCO2_CLK_ENABLE();
|
|
/* Configure the MCO2 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO2_PIN;
|
|
GPIO_InitStruct.Alternate = GPIO_AF3_MCO2;
|
|
HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
|
|
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
|
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2SEL | RCC_CFGR_MCO2PRE), (RCC_MCOSource | RCC_MCODiv));
|
|
}
|
|
#endif /* RCC_MCO2_SUPPORT */
|
|
}
|
|
|
|
/**
|
|
* @brief Return the SYSCLK frequency.
|
|
*
|
|
* @note The system frequency computed by this function is not the real
|
|
* frequency in the chip. It is calculated based on the predefined
|
|
* constant and the selected clock source:
|
|
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE/HSIDIV(*)
|
|
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
|
|
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
|
|
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
|
|
* @note If SYSCLK source is LSI, function returns values based on LSI_VALUE(***)
|
|
* @note If SYSCLK source is LSE, function returns values based on LSE_VALUE(****)
|
|
* @note (*) HSI_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
|
|
* 16 MHz) but the real value may vary depending on the variations
|
|
* in voltage and temperature.
|
|
* @note (**) HSE_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
|
|
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
|
|
* frequency of the crystal used. Otherwise, this function may
|
|
* have wrong result.
|
|
* @note (***) LSE_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
|
|
* 32768 Hz).
|
|
* @note (****) LSI_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
|
|
* 32000 Hz).
|
|
*
|
|
* @note The result of this function could be not correct when using fractional
|
|
* value for HSE crystal.
|
|
*
|
|
* @note This function can be used by the user application to compute the
|
|
* baudrate for the communication peripherals or configure other parameters.
|
|
*
|
|
* @note Each time SYSCLK changes, this function must be called to update the
|
|
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
*
|
|
* @retval SYSCLK frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetSysClockFreq(void)
|
|
{
|
|
uint32_t pllvco, pllsource, pllr, pllm, hsidiv;
|
|
uint32_t sysclockfreq;
|
|
|
|
if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
|
|
{
|
|
/* HSISYS can be derived for HSI16 */
|
|
hsidiv = (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV)) >> RCC_CR_HSIDIV_Pos));
|
|
|
|
/* HSI used as system clock source */
|
|
sysclockfreq = (HSI_VALUE / hsidiv);
|
|
}
|
|
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
|
|
{
|
|
/* HSE used as system clock source */
|
|
sysclockfreq = HSE_VALUE;
|
|
}
|
|
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK)
|
|
{
|
|
/* PLL used as system clock source */
|
|
|
|
/* PLL_VCO = ((HSE_VALUE or HSI_VALUE)/ PLLM) * PLLN
|
|
SYSCLK = PLL_VCO / PLLR
|
|
*/
|
|
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
|
|
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ;
|
|
|
|
switch (pllsource)
|
|
{
|
|
case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
|
|
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);
|
|
break;
|
|
|
|
case RCC_PLLSOURCE_HSI: /* HSI16 used as PLL clock source */
|
|
default: /* HSI16 used as PLL clock source */
|
|
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) ;
|
|
break;
|
|
}
|
|
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U);
|
|
sysclockfreq = pllvco / pllr;
|
|
}
|
|
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSE)
|
|
{
|
|
/* LSE used as system clock source */
|
|
sysclockfreq = LSE_VALUE;
|
|
}
|
|
else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSI)
|
|
{
|
|
/* LSI used as system clock source */
|
|
sysclockfreq = LSI_VALUE;
|
|
}
|
|
else
|
|
{
|
|
sysclockfreq = 0U;
|
|
}
|
|
|
|
return sysclockfreq;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the HCLK frequency.
|
|
* @note Each time HCLK changes, this function must be called to update the
|
|
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency.
|
|
* @retval HCLK frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetHCLKFreq(void)
|
|
{
|
|
return SystemCoreClock;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the PCLK1 frequency.
|
|
* @note Each time PCLK1 changes, this function must be called to update the
|
|
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @retval PCLK1 frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK1Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
return ((uint32_t)(__LL_RCC_CALC_PCLK1_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB1Prescaler())));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the RCC_OscInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
* will be configured.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(RCC_OscInitStruct != (void *)NULL);
|
|
|
|
/* Set all possible values for the Oscillator type parameter ---------------*/
|
|
#if defined(RCC_HSI48_SUPPORT)
|
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | \
|
|
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48;
|
|
#else
|
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | \
|
|
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
|
|
#endif /* RCC_HSI48_SUPPORT */
|
|
|
|
/* Get the HSE configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
}
|
|
else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
}
|
|
|
|
/* Get the HSI configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
|
|
}
|
|
|
|
RCC_OscInitStruct->HSICalibrationValue = ((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos);
|
|
RCC_OscInitStruct->HSIDiv = ((RCC->CR & RCC_CR_HSIDIV) >> RCC_CR_HSIDIV_Pos);
|
|
|
|
/* Get the LSE configuration -----------------------------------------------*/
|
|
if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
}
|
|
else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
}
|
|
|
|
/* Get the LSI configuration -----------------------------------------------*/
|
|
if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
|
|
}
|
|
|
|
#if defined(RCC_HSI48_SUPPORT)
|
|
/* Get the HSI48 configuration ---------------------------------------------*/
|
|
if (READ_BIT(RCC->CR, RCC_CR_HSI48ON) == RCC_CR_HSI48ON)
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
|
|
}
|
|
#endif /* RCC_HSI48_SUPPORT */
|
|
|
|
/* Get the PLL configuration -----------------------------------------------*/
|
|
if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
|
|
}
|
|
RCC_OscInitStruct->PLL.PLLSource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
|
|
RCC_OscInitStruct->PLL.PLLM = (RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
|
|
RCC_OscInitStruct->PLL.PLLN = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);
|
|
RCC_OscInitStruct->PLL.PLLP = (RCC->PLLCFGR & RCC_PLLCFGR_PLLP);
|
|
#if defined(RCC_PLLQ_SUPPORT)
|
|
RCC_OscInitStruct->PLL.PLLQ = (RCC->PLLCFGR & RCC_PLLCFGR_PLLQ);
|
|
#endif /* RCC_PLLQ_SUPPORT */
|
|
RCC_OscInitStruct->PLL.PLLR = (RCC->PLLCFGR & RCC_PLLCFGR_PLLR);
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the RCC_ClkInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_ClkInitStruct Pointer to a @ref RCC_ClkInitTypeDef structure that
|
|
* will be configured.
|
|
* @param pFLatency Pointer on the Flash Latency.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(RCC_ClkInitStruct != (void *)NULL);
|
|
assert_param(pFLatency != (void *)NULL);
|
|
|
|
/* Set all possible values for the Clock type parameter --------------------*/
|
|
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1;
|
|
|
|
/* Get the SYSCLK configuration --------------------------------------------*/
|
|
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
|
|
|
|
/* Get the HCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
|
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE);
|
|
|
|
|
|
/* Get the Flash Wait State (Latency) configuration ------------------------*/
|
|
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the Clock Security System.
|
|
* @note If a failure is detected on the HSE oscillator clock, this oscillator
|
|
* is automatically disabled and an interrupt is generated to inform the
|
|
* software about the failure (Clock Security System Interrupt, CSSI),
|
|
* allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
* the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector.
|
|
* @note The Clock Security System can only be cleared by reset.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_EnableCSS(void)
|
|
{
|
|
SET_BIT(RCC->CR, RCC_CR_CSSON) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the LSE Clock Security System.
|
|
* @note If a failure is detected on the LSE oscillator clock, this oscillator
|
|
* is automatically disabled and an interrupt is generated to inform the
|
|
* software about the failure (Clock Security System Interrupt, CSSI),
|
|
* allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
* the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector.
|
|
* @note The LSE Clock Security System Detection bit (LSECSSD in BDCR) can only be
|
|
* cleared by a backup domain reset.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_EnableLSECSS(void)
|
|
{
|
|
SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the LSE Clock Security System.
|
|
* @note After LSE failure detection, the software must disable LSECSSON
|
|
* @note The Clock Security System can only be cleared by reset otherwise.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_DisableLSECSS(void)
|
|
{
|
|
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the RCC Clock Security System interrupt request.
|
|
* @note This API should be called under the NMI_Handler().
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_NMI_IRQHandler(void)
|
|
{
|
|
uint32_t itflag = RCC->CIFR;
|
|
|
|
/* Clear interrupt flags related to CSS */
|
|
RCC->CICR = (itflag & (RCC_CIFR_CSSF | RCC_CIFR_LSECSSF));
|
|
|
|
/* Check RCC CSSF interrupt flag */
|
|
if ((itflag & RCC_CIFR_CSSF) != 0x00u)
|
|
{
|
|
/* RCC Clock Security System interrupt user callback */
|
|
HAL_RCC_CSSCallback();
|
|
}
|
|
|
|
/* Check RCC LSECSSF interrupt flag */
|
|
if ((itflag & RCC_CIFR_LSECSSF) != 0x00u)
|
|
{
|
|
/* RCC Clock Security System interrupt user callback */
|
|
HAL_RCC_LSECSSCallback();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the RCC HSE Clock Security System interrupt callback.
|
|
* @retval none
|
|
*/
|
|
__weak void HAL_RCC_CSSCallback(void)
|
|
{
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the @ref HAL_RCC_CSSCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief RCC LSE Clock Security System interrupt callback.
|
|
* @retval none
|
|
*/
|
|
__weak void HAL_RCC_LSECSSCallback(void)
|
|
{
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_RCC_LSECSSCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_RCC_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|